-
Previous Article
Scattering and strong instability of the standing waves for dipolar quantum gases
- DCDS-B Home
- This Issue
-
Next Article
Qualitative properties and bifurcations of a leaf-eating herbivores model
Asymptotics in a two-species chemotaxis system with logistic source
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China |
This paper deals with nonnegative solutions of a fully parabolic two-species chemotaxis system with competitive kinetics under homogeneous Neumann boundary conditions in a N-dimensional bounded smooth domain with reasonably smooth nonnegative initial data. In a previous paper of Bai & Winkler (2016), the equilibrium of the global bounded classical solution was shown in both coexistence and extinction cases. We extend this result to weak solutions and prove these solutions globally exist and finally converge to the same semi-trivial steady state in a certain sense.
References:
[1] |
S. Ahmad,
Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (eds. Schmeisser, H. and Triebel, H.), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9–126.
doi: 10.1007/978-3-663-11336-2_1. |
[3] |
X. Bai and M. Winkler,
Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
doi: 10.1512/iumj.2016.65.5776. |
[4] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[5] |
X. Cao, An interpolation inequality and its application in Keller-Segel model, preprint, arXiv: 1707.09235. Google Scholar |
[6] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[7] |
X. Cao,
Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.
doi: 10.3934/dcdsb.2017141. |
[8] |
X. Chen, A. Jüngel and J.-G. Liu,
A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[9] |
L. Corrias and B. Perthame,
Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Model., 47 (2008), 755-764.
doi: 10.1016/j.mcm.2007.06.005. |
[10] |
X. He and S. Zheng,
Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.
doi: 10.1016/j.jmaa.2015.12.058. |
[11] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.
|
[12] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[13] |
H.-Y. Jin and Z.-A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
J. Lankeit,
Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.
doi: 10.1016/j.jde.2014.10.016. |
[16] |
J. Lankeit and Y. Wang,
Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099-6121.
doi: 10.3934/dcds.2017262. |
[17] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[18] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[19] |
K. Osaki and A. Yagi,
Global existence of a chemotaxis-growth system in ${\Bbb R}^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606.
|
[20] |
C. Stinner, J. I. Tello and M. Winkler,
Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.
doi: 10.1007/s00285-013-0681-7. |
[21] |
Y. Tao and M. Winkler,
Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.
doi: 10.3934/dcdsb.2015.20.3165. |
[22] |
J. I. Tello and M. Winkler,
Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413. |
[23] |
L. Wang, Y. Li and C. Mu,
Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.
doi: 10.3934/dcds.2014.34.789. |
[24] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[25] |
M. Winkler,
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426. |
[26] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[27] |
M. Winkler,
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023. |
[28] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[29] |
C. Yang, X. Cao, Z. Jiang and S. Zheng,
Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.
doi: 10.1016/j.jmaa.2015.04.093. |
[30] |
M. L. Zeeman,
Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.
doi: 10.1090/S0002-9939-1995-1264833-2. |
[31] |
Q. Zhang and Y. Li,
Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.
doi: 10.1007/s00033-013-0383-4. |
show all references
References:
[1] |
S. Ahmad,
Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (eds. Schmeisser, H. and Triebel, H.), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9–126.
doi: 10.1007/978-3-663-11336-2_1. |
[3] |
X. Bai and M. Winkler,
Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
doi: 10.1512/iumj.2016.65.5776. |
[4] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[5] |
X. Cao, An interpolation inequality and its application in Keller-Segel model, preprint, arXiv: 1707.09235. Google Scholar |
[6] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[7] |
X. Cao,
Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.
doi: 10.3934/dcdsb.2017141. |
[8] |
X. Chen, A. Jüngel and J.-G. Liu,
A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[9] |
L. Corrias and B. Perthame,
Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Model., 47 (2008), 755-764.
doi: 10.1016/j.mcm.2007.06.005. |
[10] |
X. He and S. Zheng,
Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.
doi: 10.1016/j.jmaa.2015.12.058. |
[11] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.
|
[12] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[13] |
H.-Y. Jin and Z.-A. Wang,
Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
J. Lankeit,
Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.
doi: 10.1016/j.jde.2014.10.016. |
[16] |
J. Lankeit and Y. Wang,
Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099-6121.
doi: 10.3934/dcds.2017262. |
[17] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[18] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[19] |
K. Osaki and A. Yagi,
Global existence of a chemotaxis-growth system in ${\Bbb R}^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606.
|
[20] |
C. Stinner, J. I. Tello and M. Winkler,
Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.
doi: 10.1007/s00285-013-0681-7. |
[21] |
Y. Tao and M. Winkler,
Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.
doi: 10.3934/dcdsb.2015.20.3165. |
[22] |
J. I. Tello and M. Winkler,
Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413. |
[23] |
L. Wang, Y. Li and C. Mu,
Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.
doi: 10.3934/dcds.2014.34.789. |
[24] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[25] |
M. Winkler,
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426. |
[26] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[27] |
M. Winkler,
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023. |
[28] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[29] |
C. Yang, X. Cao, Z. Jiang and S. Zheng,
Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.
doi: 10.1016/j.jmaa.2015.04.093. |
[30] |
M. L. Zeeman,
Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.
doi: 10.1090/S0002-9939-1995-1264833-2. |
[31] |
Q. Zhang and Y. Li,
Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.
doi: 10.1007/s00033-013-0383-4. |
[1] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[2] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[3] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[4] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[5] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[6] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[7] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[8] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[9] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[10] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[11] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[12] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[13] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[14] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[15] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[16] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[17] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[18] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[19] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[20] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]