-
Previous Article
A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation
- DCDS-B Home
- This Issue
-
Next Article
Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays
On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, , Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n, 41012 - Sevilla, Spain |
2. | Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam |
3. | Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
4. | Department of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
In this paper, we study two stochastic problems for time-fractional Rayleigh-Stokes equation including the initial value problem and the terminal value problem. Here, two problems are perturbed by Wiener process, the fractional derivative are taken in the sense of Riemann-Liouville, the source function and the time-spatial noise are nonlinear and satisfy the globally Lipschitz conditions. We attempt to give some existence results and regularity properties for the mild solution of each problem.
References:
[1] |
E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou,
An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer Math., 131 (2015), 1-31.
doi: 10.1007/s00211-014-0685-2. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[3] |
L. Debbi,
Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains., J. Math. Fluid Mech., 18 (2016), 25-69.
doi: 10.1007/s00021-015-0234-5. |
[4] |
M. Dehghan,
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications., Numer. Methods Partial Differential Equations, 22 (2006), 220-257.
doi: 10.1002/num.20071. |
[5] |
M. Dehghan,
The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fract., 32 (2007), 661-675.
doi: 10.1016/j.chaos.2005.11.010. |
[6] |
M. Dehghan and M. Abbaszadeh, A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng Comput., 33 (2017), 587-605. Google Scholar |
[7] |
C. Fetecau, M. Jamil, C. Fetecau and D. Vieru,
The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid, Z. Angew. Math. Phys., 60 (2009), 921-933.
doi: 10.1007/s00033-008-8055-5. |
[8] |
G. Hu, Y. Lou and P. D. Christofides, Dynamic output feedback covariance control of stochastic dissipative partial differential equations, Chem. Eng. Sci., 63 (2008), 4531-4542. Google Scholar |
[9] |
Y. Jiang, T. Wei and X. Zhou,
Stochastic generalized Burgers equations driven by fractional noises, J. Differ. Equ., 252 (2012), 1934-1961.
doi: 10.1016/j.jde.2011.07.032. |
[10] |
M. Khan,
The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model, Nonlinear Anal. Real World Appl., 10 (2009), 3190-3195.
doi: 10.1016/j.nonrwa.2008.10.002. |
[11] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[12] |
M. Lakestani and M. Dehghan,
The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math., 235 (2010), 669-678.
doi: 10.1016/j.cam.2010.06.020. |
[13] |
P. D. Lax, Functional Analysis, Wiley Interscience, New York, 2002. |
[14] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[15] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction-diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[16] |
Y. Li and Y. Wang.,
The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay., J. Differential Equations, 266 (2019), 3514-3558.
doi: 10.1016/j.jde.2018.09.009. |
[17] |
J. Liang, X. Qian, T. Shen and S. Song,
Analysis of time fractional and space nonlocal stochastic nonlinear Schrödinger equation driven by multiplicative white noise, J. Math. Anal. Appl., 466 (2018), 1525-1544.
doi: 10.1016/j.jmaa.2018.06.066. |
[18] |
T. B. Ngoc, N. H. Luc, V. V. Au, N. H. Tuan and Z. Yong, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Meth. Appl. Sci., (2020), 1–27. Google Scholar |
[19] |
H. L. Nguyen, H. T. Nguyen, K. Mokhtar and X. T. Duong Dang,
Identifying initial condition of the Rayleigh-Stokes problem with random noise, Math. Meth. Appl. Sci., 42 (2019), 1561-1571.
doi: 10.1002/mma.5455. |
[20] |
H. L. Nguyen, H. T. Nguyen and Y. Zhou,
Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.
doi: 10.1002/mma.5593. |
[21] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23 pp.
doi: 10.1088/1361-6420/ab532c. |
[22] |
J.-C. Pedjeu and G. S. Ladde,
Stochastic fractional differential equations: Modeling, method and analysis, Chaos Solitons Fractals, 45 (2012), 279-293.
doi: 10.1016/j.chaos.2011.12.009. |
[23] |
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
![]() |
[24] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, 2007. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
F. Shen, W. Tan, Y. Zhao and T. Masuoka,
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model., Nonlinear Anal. Real World Appl., 7 (2006), 1072-1080.
doi: 10.1016/j.nonrwa.2005.09.007. |
[27] |
X. Su and M. Li,
The regularity of fractional stochastic evolution equations in Hilbert space, Stoch. Anal. Appl., 36 (2018), 639-653.
doi: 10.1080/07362994.2018.1436973. |
[28] |
N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data., Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104873, 18 pp.
doi: 10.1016/j.cnsns.2019.104873. |
[29] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[30] |
R. Wang, L. Shi and B. Wang,
Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\Bbb R^N$, Nonlinearity, 32 (2019), 4524-4556.
doi: 10.1088/1361-6544/ab32d7. |
[31] |
C. Xue and J. Nie,
Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, App. Math. Model, 33 (2009), 524-531.
doi: 10.1016/j.apm.2007.11.015. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
M. A. Zaky,
An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243-2258.
doi: 10.1016/j.camwa.2017.12.004. |
[34] |
C. Zhao and C. Yang,
Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput., 211 (2009), 502-509.
doi: 10.1016/j.amc.2009.01.068. |
[35] |
G. Zou, G. Lv and J.-L. Wu,
Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 461 (2018), 595-609.
doi: 10.1016/j.jmaa.2018.01.027. |
[36] |
G. Zou and B. Wang,
Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195-3208.
doi: 10.1016/j.camwa.2017.08.023. |
show all references
References:
[1] |
E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou,
An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer Math., 131 (2015), 1-31.
doi: 10.1007/s00211-014-0685-2. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[3] |
L. Debbi,
Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains., J. Math. Fluid Mech., 18 (2016), 25-69.
doi: 10.1007/s00021-015-0234-5. |
[4] |
M. Dehghan,
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications., Numer. Methods Partial Differential Equations, 22 (2006), 220-257.
doi: 10.1002/num.20071. |
[5] |
M. Dehghan,
The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fract., 32 (2007), 661-675.
doi: 10.1016/j.chaos.2005.11.010. |
[6] |
M. Dehghan and M. Abbaszadeh, A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng Comput., 33 (2017), 587-605. Google Scholar |
[7] |
C. Fetecau, M. Jamil, C. Fetecau and D. Vieru,
The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid, Z. Angew. Math. Phys., 60 (2009), 921-933.
doi: 10.1007/s00033-008-8055-5. |
[8] |
G. Hu, Y. Lou and P. D. Christofides, Dynamic output feedback covariance control of stochastic dissipative partial differential equations, Chem. Eng. Sci., 63 (2008), 4531-4542. Google Scholar |
[9] |
Y. Jiang, T. Wei and X. Zhou,
Stochastic generalized Burgers equations driven by fractional noises, J. Differ. Equ., 252 (2012), 1934-1961.
doi: 10.1016/j.jde.2011.07.032. |
[10] |
M. Khan,
The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model, Nonlinear Anal. Real World Appl., 10 (2009), 3190-3195.
doi: 10.1016/j.nonrwa.2008.10.002. |
[11] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[12] |
M. Lakestani and M. Dehghan,
The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math., 235 (2010), 669-678.
doi: 10.1016/j.cam.2010.06.020. |
[13] |
P. D. Lax, Functional Analysis, Wiley Interscience, New York, 2002. |
[14] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[15] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction-diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[16] |
Y. Li and Y. Wang.,
The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay., J. Differential Equations, 266 (2019), 3514-3558.
doi: 10.1016/j.jde.2018.09.009. |
[17] |
J. Liang, X. Qian, T. Shen and S. Song,
Analysis of time fractional and space nonlocal stochastic nonlinear Schrödinger equation driven by multiplicative white noise, J. Math. Anal. Appl., 466 (2018), 1525-1544.
doi: 10.1016/j.jmaa.2018.06.066. |
[18] |
T. B. Ngoc, N. H. Luc, V. V. Au, N. H. Tuan and Z. Yong, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Meth. Appl. Sci., (2020), 1–27. Google Scholar |
[19] |
H. L. Nguyen, H. T. Nguyen, K. Mokhtar and X. T. Duong Dang,
Identifying initial condition of the Rayleigh-Stokes problem with random noise, Math. Meth. Appl. Sci., 42 (2019), 1561-1571.
doi: 10.1002/mma.5455. |
[20] |
H. L. Nguyen, H. T. Nguyen and Y. Zhou,
Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.
doi: 10.1002/mma.5593. |
[21] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23 pp.
doi: 10.1088/1361-6420/ab532c. |
[22] |
J.-C. Pedjeu and G. S. Ladde,
Stochastic fractional differential equations: Modeling, method and analysis, Chaos Solitons Fractals, 45 (2012), 279-293.
doi: 10.1016/j.chaos.2011.12.009. |
[23] |
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
![]() |
[24] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, 2007. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
F. Shen, W. Tan, Y. Zhao and T. Masuoka,
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model., Nonlinear Anal. Real World Appl., 7 (2006), 1072-1080.
doi: 10.1016/j.nonrwa.2005.09.007. |
[27] |
X. Su and M. Li,
The regularity of fractional stochastic evolution equations in Hilbert space, Stoch. Anal. Appl., 36 (2018), 639-653.
doi: 10.1080/07362994.2018.1436973. |
[28] |
N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data., Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104873, 18 pp.
doi: 10.1016/j.cnsns.2019.104873. |
[29] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[30] |
R. Wang, L. Shi and B. Wang,
Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\Bbb R^N$, Nonlinearity, 32 (2019), 4524-4556.
doi: 10.1088/1361-6544/ab32d7. |
[31] |
C. Xue and J. Nie,
Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, App. Math. Model, 33 (2009), 524-531.
doi: 10.1016/j.apm.2007.11.015. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
M. A. Zaky,
An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243-2258.
doi: 10.1016/j.camwa.2017.12.004. |
[34] |
C. Zhao and C. Yang,
Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput., 211 (2009), 502-509.
doi: 10.1016/j.amc.2009.01.068. |
[35] |
G. Zou, G. Lv and J.-L. Wu,
Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 461 (2018), 595-609.
doi: 10.1016/j.jmaa.2018.01.027. |
[36] |
G. Zou and B. Wang,
Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195-3208.
doi: 10.1016/j.camwa.2017.08.023. |
[1] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[2] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[3] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[6] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[7] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[8] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[9] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[10] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[11] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[12] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[13] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[14] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[15] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[16] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[17] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[18] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[19] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[20] |
Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]