• Previous Article
    Limiting behavior of unstable manifolds for spdes in varying phase spaces
  • DCDS-B Home
  • This Issue
  • Next Article
    The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
doi: 10.3934/dcdsb.2020291

Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130024, Jilin Province, China

2. 

School of Continuing Education, Northeast Normal University, Changchun 130024, Jilin Province, China

* Correspondence should be addressed to Qingmei Chen, E-mail: chenqingmei.2007@163.com, Tel.:+8613617755207; fax:+8613617755207

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The authors were supported by the National Natural Science Foundation of China (No.12001090) and the Fundamental Research Funds for the Central Universities of China (No.2412020QD024)

In this paper, we construct a stochastic SEIS epidemic model that incorporates constant recruitment, non-degenerate diffusion and infectious force in the latent period and infected period. By solving the corresponding Fokker-Planck equation, we obtain the exact expression of the density function around the endemic equilibrium of the deterministic system provided that the basic reproduction number is greater than one. Our work greatly improves the result of Chen [A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 2020, 106200].

Citation: Qun Liu, Qingmei Chen. Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020291
References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

show all references

References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[11]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[12]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[13]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[14]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[15]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (171)
  • Cited by (0)

Other articles
by authors

[Back to Top]