doi: 10.3934/dcdsb.2020291

Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130024, Jilin Province, China

2. 

School of Continuing Education, Northeast Normal University, Changchun 130024, Jilin Province, China

* Correspondence should be addressed to Qingmei Chen, E-mail: chenqingmei.2007@163.com, Tel.:+8613617755207; fax:+8613617755207

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The authors were supported by the National Natural Science Foundation of China (No.12001090) and the Fundamental Research Funds for the Central Universities of China (No.2412020QD024)

In this paper, we construct a stochastic SEIS epidemic model that incorporates constant recruitment, non-degenerate diffusion and infectious force in the latent period and infected period. By solving the corresponding Fokker-Planck equation, we obtain the exact expression of the density function around the endemic equilibrium of the deterministic system provided that the basic reproduction number is greater than one. Our work greatly improves the result of Chen [A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 2020, 106200].

Citation: Qun Liu, Qingmei Chen. Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020291
References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

show all references

References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

[1]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[2]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[3]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[4]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[5]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[8]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[13]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[16]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[19]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.27

Article outline

[Back to Top]