• Previous Article
    Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays
  • DCDS-B Home
  • This Issue
  • Next Article
    The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
doi: 10.3934/dcdsb.2020291

Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion

1. 

School of Mathematics and Statistics, Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130024, Jilin Province, China

2. 

School of Continuing Education, Northeast Normal University, Changchun 130024, Jilin Province, China

* Correspondence should be addressed to Qingmei Chen, E-mail: chenqingmei.2007@163.com, Tel.:+8613617755207; fax:+8613617755207

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The authors were supported by the National Natural Science Foundation of China (No.12001090) and the Fundamental Research Funds for the Central Universities of China (No.2412020QD024)

In this paper, we construct a stochastic SEIS epidemic model that incorporates constant recruitment, non-degenerate diffusion and infectious force in the latent period and infected period. By solving the corresponding Fokker-Planck equation, we obtain the exact expression of the density function around the endemic equilibrium of the deterministic system provided that the basic reproduction number is greater than one. Our work greatly improves the result of Chen [A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 2020, 106200].

Citation: Qun Liu, Qingmei Chen. Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020291
References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

show all references

References:
[1]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221-240.  doi: 10.1016/j.amc.2017.02.003.  Google Scholar

[2]

Z. CaoW. FengX. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 523 (2019), 894-907.  doi: 10.1016/j.physa.2019.04.228.  Google Scholar

[3]

T. CaraballoM. J. Garrido-Atienza and J. L. de-la Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Commun. Pure Appl. Anal., 16 (2017), 1893-1914.  doi: 10.3934/cpaa.2017092.  Google Scholar

[4]

Z. ChangX. Meng and T. Zhang, A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise, Appl. Math. Lett., 87 (2019), 80-86.  doi: 10.1016/j.aml.2018.07.014.  Google Scholar

[5]

Q. Chen, A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion, Appl. Math. Lett., 103 (2020), 106200, 6 pp. doi: 10.1016/j.aml.2019.106200.  Google Scholar

[6]

M. FanM. Y. Li and K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208.  doi: 10.1016/S0025-5564(00)00067-5.  Google Scholar

[7]

T. FengZ. QiuX. Meng and L. Rong, Analysis of a stochastic HIV-1 infection model with degenerate diffusion, Appl. Math. Comput., 348 (2019), 437-455.  doi: 10.1016/j.amc.2018.12.007.  Google Scholar

[8]

J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13-27.  doi: 10.1016/S0025-5564(98)10020-2.  Google Scholar

[9]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[10]

H.-F. HuoP. Yang and H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Phys. A, 490 (2018), 702-720.  doi: 10.1016/j.physa.2017.08.139.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (Part I), Proc. Soc. Lond. Ser. A, 115 (1927), 700-721.   Google Scholar

[12]

G. Li and Z. Jin, Global stability of an SEI epidemic model, Chaos, Soliton. Fract., 21 (2004), 925-931.   Google Scholar

[13]

H. LiR. Peng and Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[14]

G. Li and J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals, 23 (2005), 997-1004.  doi: 10.1016/j.chaos.2004.06.012.  Google Scholar

[15]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347-7370.  doi: 10.1016/j.jfranklin.2019.06.030.  Google Scholar

[16]

S. LiuY. PeiC. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923-1932.  doi: 10.1016/j.apm.2008.05.001.  Google Scholar

[17]

J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241-250.  doi: 10.1016/j.physa.2016.06.120.  Google Scholar

[18]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[19]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997.  Google Scholar

[20]

B. Mukhopadhyay and R. Bhattacharyya, Analysis of a spatially extended nonlinear SEIS epidemic model with distinct incidence for exposed and infectives, Nonlinear Anal. Real World Appl., 9 (2008), 585-598.  doi: 10.1016/j.nonrwa.2006.12.003.  Google Scholar

[21]

R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218 (2012), 7927-7938.  doi: 10.1016/j.amc.2012.01.076.  Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[4]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[7]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[8]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[9]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[10]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[11]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[14]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic & Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[15]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[16]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[17]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[18]

Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic & Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011

[19]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[20]

L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg. The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks & Heterogeneous Media, 2013, 8 (1) : 37-64. doi: 10.3934/nhm.2013.8.37

2019 Impact Factor: 1.27

Article outline

[Back to Top]