doi: 10.3934/dcdsb.2020292

Modulation approximation for the quantum Euler-Poisson equation

1. 

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

2. 

Faculty of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China

3. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

* Corresponding author: Huimin Liu

Received  April 2020 Revised  August 2020 Published  October 2020

Fund Project: The first author D. Bian is supported by NSFC under the Contract 11871005. The second author H. Liu is supported by NSFC under the Contract 12001338, the Youth Fund of Shanxi University of Finance and Economics of China under Z06180 and the Science and Technology Innovation Project of Shanxi Province of China under 2020L0256. The last author X. Pu is supported by NSFC under the contract 11871172 and the Natural Science Foundation of Guangdong Province of China under 2019A1515012000

The nonlinear Schrödinger (NLS) equation is used to describe the envelopes of slowly modulated spatially and temporally oscillating wave packet-like solutions, which can be derived as a formal approximation equation of the quantum Euler-Poisson equation. In this paper, we rigorously justify such an approximation by taking a modified energy functional and a space-time resonance method to overcome the difficulties induced by the quadratic terms, resonance and quasilinearity.

Citation: Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020292
References:
[1]

R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., in Beijing Lectures in Harmonic Analysis, Princeton University Press, (1986), 3–45. Google Scholar

[2]

W. Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987), 213-232.  doi: 10.1007/BF01457361.  Google Scholar

[3]

P. Cummings and C. E. Wayne, Modified energy functionals and the NLS approximation, Discrete Contin. Dyn. Syst., 37 (2017), 1295-1321.  doi: 10.3934/dcds.2017054.  Google Scholar

[4]

W.-P. Düll, Justification of the Nonlinear Schrödinger approximation for a quasilinear wave equation, preprint, arXiv: 1602.08016. Google Scholar

[5]

W.-P. Düll, Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation, Comm. Math. Phys., 355 (2017), 1189-1207.  doi: 10.1007/s00220-017-2966-y.  Google Scholar

[6]

W.-P. Düll and M. Heß, Existence of long time solutions and validity of the Nonlinear Schrödinger approximation for a quasilinear dispersive equation, J. Differ. Equ., 264 (2018), 2598-2632.  doi: 10.1016/j.jde.2017.10.031.  Google Scholar

[7]

W.-P. DüllG. Schneider and C. E. Wayne, Justification of the Nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth, Arch. Ration. Mech. Anal., 220 (2016), 543-602.  doi: 10.1007/s00205-015-0937-z.  Google Scholar

[8]

P. Germain, Space-time resonance, preprint, arXiv: 1102.1695. doi: 10.5802/jedp.65.  Google Scholar

[9]

P. GermainN. Masmoudi and J. Shatah, Global solutions for the gravity water waves equation in dimention 3, Ann. Math., 175 (2012), 691-754.  doi: 10.4007/annals.2012.175.2.6.  Google Scholar

[10]

Y. Guo and X. Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal., 211 (2014), 673-710.  doi: 10.1007/s00205-013-0683-z.  Google Scholar

[11]

F. HaasL. Garcia and J. Goedert, Quantum ion acoustic waves, Phys. Plasmas., 10 (2003), 3858-3866.   Google Scholar

[12]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Am. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[13]

J. Jackson, Classical Electrodynamics, Wiley, 1999. Google Scholar

[14]

L. A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium, Math. USSR-Sb., 60 (1988), 457-483.  doi: 10.1070/SM1988v060n02ABEH003181.  Google Scholar

[15]

P. KirrmannG. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A., 122 (1992), 85-91.  doi: 10.1017/S0308210500020989.  Google Scholar

[16]

D. Lannes, Space time resonances, Seminaire Bourbaki, 2011/2012 (2013), 1043-1058.   Google Scholar

[17]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer, New York, 84 (2013), 181–213. doi: 10.1007/978-1-4614-6348-1_10.  Google Scholar

[18]

H. Liu and X. Pu, Long wavelength limit for the quantum Euler-Poisson equation, SIAM J. Math. Anal., 48 (2016), 2345-2381.  doi: 10.1137/15M1046587.  Google Scholar

[19]

H. Liu and X. Pu, Justification of the NLS approximation for the Euler-Poisson equation, Comm. Math. Phys., 371 (2019), 357-398.  doi: 10.1007/s00220-019-03576-4.  Google Scholar

[20]

X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal., 45 (2013), 834-878.  doi: 10.1137/120875648.  Google Scholar

[21]

G. Schneider, Justification of the NLS approximation for the KdV equation using the Miura transformation, Adv. Math. Phys., 2011 (2011), Art. ID 854719, 4 pp. doi: 10.1155/2011/854719.  Google Scholar

[22]

G. Schneider and C. E. Wayne, The long-wave limit for the water wave problem I. The case of zero surface tension, Comm. Pure Appl. Math., 53 (2000), 1475-1535.  doi: 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V.  Google Scholar

[23]

G. Schneider and C. E. Wayne, Justification of the NLS approximation for a quasilinear water wave model, J. Differ. Equ., 251 (2011), 238-269.  doi: 10.1016/j.jde.2011.04.011.  Google Scholar

[24]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[25]

K. Shimizu and Y. Ichikawa, Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Jpn., 33 (1972), 789-792.  doi: 10.1143/JPSJ.33.789.  Google Scholar

[26]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443.  doi: 10.1007/s00220-014-2259-7.  Google Scholar

[27]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883.  doi: 10.1007/s00220-012-1422-2.  Google Scholar

show all references

References:
[1]

R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., in Beijing Lectures in Harmonic Analysis, Princeton University Press, (1986), 3–45. Google Scholar

[2]

W. Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987), 213-232.  doi: 10.1007/BF01457361.  Google Scholar

[3]

P. Cummings and C. E. Wayne, Modified energy functionals and the NLS approximation, Discrete Contin. Dyn. Syst., 37 (2017), 1295-1321.  doi: 10.3934/dcds.2017054.  Google Scholar

[4]

W.-P. Düll, Justification of the Nonlinear Schrödinger approximation for a quasilinear wave equation, preprint, arXiv: 1602.08016. Google Scholar

[5]

W.-P. Düll, Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation, Comm. Math. Phys., 355 (2017), 1189-1207.  doi: 10.1007/s00220-017-2966-y.  Google Scholar

[6]

W.-P. Düll and M. Heß, Existence of long time solutions and validity of the Nonlinear Schrödinger approximation for a quasilinear dispersive equation, J. Differ. Equ., 264 (2018), 2598-2632.  doi: 10.1016/j.jde.2017.10.031.  Google Scholar

[7]

W.-P. DüllG. Schneider and C. E. Wayne, Justification of the Nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth, Arch. Ration. Mech. Anal., 220 (2016), 543-602.  doi: 10.1007/s00205-015-0937-z.  Google Scholar

[8]

P. Germain, Space-time resonance, preprint, arXiv: 1102.1695. doi: 10.5802/jedp.65.  Google Scholar

[9]

P. GermainN. Masmoudi and J. Shatah, Global solutions for the gravity water waves equation in dimention 3, Ann. Math., 175 (2012), 691-754.  doi: 10.4007/annals.2012.175.2.6.  Google Scholar

[10]

Y. Guo and X. Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal., 211 (2014), 673-710.  doi: 10.1007/s00205-013-0683-z.  Google Scholar

[11]

F. HaasL. Garcia and J. Goedert, Quantum ion acoustic waves, Phys. Plasmas., 10 (2003), 3858-3866.   Google Scholar

[12]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Am. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[13]

J. Jackson, Classical Electrodynamics, Wiley, 1999. Google Scholar

[14]

L. A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium, Math. USSR-Sb., 60 (1988), 457-483.  doi: 10.1070/SM1988v060n02ABEH003181.  Google Scholar

[15]

P. KirrmannG. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A., 122 (1992), 85-91.  doi: 10.1017/S0308210500020989.  Google Scholar

[16]

D. Lannes, Space time resonances, Seminaire Bourbaki, 2011/2012 (2013), 1043-1058.   Google Scholar

[17]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer, New York, 84 (2013), 181–213. doi: 10.1007/978-1-4614-6348-1_10.  Google Scholar

[18]

H. Liu and X. Pu, Long wavelength limit for the quantum Euler-Poisson equation, SIAM J. Math. Anal., 48 (2016), 2345-2381.  doi: 10.1137/15M1046587.  Google Scholar

[19]

H. Liu and X. Pu, Justification of the NLS approximation for the Euler-Poisson equation, Comm. Math. Phys., 371 (2019), 357-398.  doi: 10.1007/s00220-019-03576-4.  Google Scholar

[20]

X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal., 45 (2013), 834-878.  doi: 10.1137/120875648.  Google Scholar

[21]

G. Schneider, Justification of the NLS approximation for the KdV equation using the Miura transformation, Adv. Math. Phys., 2011 (2011), Art. ID 854719, 4 pp. doi: 10.1155/2011/854719.  Google Scholar

[22]

G. Schneider and C. E. Wayne, The long-wave limit for the water wave problem I. The case of zero surface tension, Comm. Pure Appl. Math., 53 (2000), 1475-1535.  doi: 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V.  Google Scholar

[23]

G. Schneider and C. E. Wayne, Justification of the NLS approximation for a quasilinear water wave model, J. Differ. Equ., 251 (2011), 238-269.  doi: 10.1016/j.jde.2011.04.011.  Google Scholar

[24]

J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.  doi: 10.1002/cpa.3160380516.  Google Scholar

[25]

K. Shimizu and Y. Ichikawa, Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Jpn., 33 (1972), 789-792.  doi: 10.1143/JPSJ.33.789.  Google Scholar

[26]

N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443.  doi: 10.1007/s00220-014-2259-7.  Google Scholar

[27]

N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883.  doi: 10.1007/s00220-012-1422-2.  Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[5]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[6]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[7]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[11]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[12]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[13]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[14]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[15]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[16]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[17]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[18]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[19]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[20]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.27

Article outline

[Back to Top]