doi: 10.3934/dcdsb.2020293

Bifurcations in an economic model with fractional degree

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: Supported by NSFC grants #11771307, #11831012 and #11821001

A planar ODE system which models the industrialization of a small open economy is considered. Because fractional powers are involved, its interior equilibria are hardly found by solving a transcendental equation and the routine qualitative analysis is not applicable. We qualitatively discuss the transcendental equation, eliminating the transcendental term to polynomialize the expression of extreme value, so that we can compute polynomials to obtain the number of interior equilibria in all cases and complete their qualitative analysis. Orbits near the origin, at which the system cannot be extended differentiably, are investigated by using the GNS method. Then we display all bifurcations of equilibria such as saddle-node bifurcation, transcritical bifurcation and a codimension 2 bifurcation on a one-dimensional center manifold. Furthermore, we prove nonexistence of closed orbits, homoclinic loops and heteroclinic loops, exhibit global orbital structure of the system and analyze the tendency of the industrialization development.

Citation: Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020293
References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

show all references

References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

Figure 1.  Parameter plane and global phase portrait
Figure 2.  Phase portraits of system (1) in a bounded region
Table 1.  Conditions obtained in [1]
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
[1]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088

[2]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[3]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[4]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021117

[5]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[6]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[7]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[8]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[9]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[10]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[11]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[12]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[13]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[14]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[15]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[16]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[19]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]