doi: 10.3934/dcdsb.2020293

Bifurcations in an economic model with fractional degree

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: Supported by NSFC grants #11771307, #11831012 and #11821001

A planar ODE system which models the industrialization of a small open economy is considered. Because fractional powers are involved, its interior equilibria are hardly found by solving a transcendental equation and the routine qualitative analysis is not applicable. We qualitatively discuss the transcendental equation, eliminating the transcendental term to polynomialize the expression of extreme value, so that we can compute polynomials to obtain the number of interior equilibria in all cases and complete their qualitative analysis. Orbits near the origin, at which the system cannot be extended differentiably, are investigated by using the GNS method. Then we display all bifurcations of equilibria such as saddle-node bifurcation, transcritical bifurcation and a codimension 2 bifurcation on a one-dimensional center manifold. Furthermore, we prove nonexistence of closed orbits, homoclinic loops and heteroclinic loops, exhibit global orbital structure of the system and analyze the tendency of the industrialization development.

Citation: Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020293
References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

show all references

References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

Figure 1.  Parameter plane and global phase portrait
Figure 2.  Phase portraits of system (1) in a bounded region
Table 1.  Conditions obtained in [1]
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
[1]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[2]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[3]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[4]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[5]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[6]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[10]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[11]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[12]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[16]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[19]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[20]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]