doi: 10.3934/dcdsb.2020293

Bifurcations in an economic model with fractional degree

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: Supported by NSFC grants #11771307, #11831012 and #11821001

A planar ODE system which models the industrialization of a small open economy is considered. Because fractional powers are involved, its interior equilibria are hardly found by solving a transcendental equation and the routine qualitative analysis is not applicable. We qualitatively discuss the transcendental equation, eliminating the transcendental term to polynomialize the expression of extreme value, so that we can compute polynomials to obtain the number of interior equilibria in all cases and complete their qualitative analysis. Orbits near the origin, at which the system cannot be extended differentiably, are investigated by using the GNS method. Then we display all bifurcations of equilibria such as saddle-node bifurcation, transcritical bifurcation and a codimension 2 bifurcation on a one-dimensional center manifold. Furthermore, we prove nonexistence of closed orbits, homoclinic loops and heteroclinic loops, exhibit global orbital structure of the system and analyze the tendency of the industrialization development.

Citation: Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020293
References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

show all references

References:
[1]

A. AntociP. RussuS. Sordi and E. Ticci, Industrialization and environmental externalities in a Solow-type model, J. Econ. Dynam. Control, 47 (2014), 211-224.  doi: 10.1016/j.jedc.2014.08.009.  Google Scholar

[2]

A. Antoci, P. Russu and E. Ticci, Structural change, economic growth and environmental dynamics with heterogeneous agents, in Nonlinear Dynamics in Economics, Finance and the Social Sciences, (eds. G.I. Bischi et. al.), Springer Berlin, (2010), 13–38. doi: 10.1007/978-3-642-04023-8_2.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.  Google Scholar

[4]

W. Easterly, The political economy of growth without development: A case study of Pakistan, in In Search of Prosperity: Analytic Narratives on Economic Growth, (ed. D. Rodrik), Princeton University Press, Princeton, (2013), 439–472. doi: 10.1515/9781400845897-016.  Google Scholar

[5]

M. Frommer, Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99 (1928), 222-272.  doi: 10.1007/BF01459096.  Google Scholar

[6]

B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Netw., 19 (2008), 782-794.  doi: 10.1109/TNN.2007.912321.  Google Scholar

[7]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[8]

X. HouR. Yan and W. Zhang, Bifurcations of a polynomial differential system of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.  doi: 10.1016/S0898-1221(02)00108-6.  Google Scholar

[9]

P. KongsamuttS. Rebelo and D. Xie, Beyong balanced growth, Rev. Econom. Stud., 68 (2001), 869-882.  doi: 10.1111/1467-937X.00193.  Google Scholar

[10]

R. López, Sustainable economic development: On the coexistence of resource-dependent resource-impacting industries, Environ. Dev. Econ., 15 (2010), 687-705.  doi: 10.1017/S1355770X10000331.  Google Scholar

[11]

R. E. LópezG. Anríquez and S. Gulati, Structural change and sustainable development, J. Environ. Econ. Manage., 53 (2007), 307-322.  doi: 10.1016/j.jeem.2006.10.003.  Google Scholar

[12]

R. López and M. Schiff, Interactive dynamics between natural and man-made assets: The impact of external shocks, J. Dev. Econ., 104 (2013), 1-15.  doi: 10.1016/j.jdeveco.2013.04.001.  Google Scholar

[13]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, J. Econ. Theory, 58 (1992), 317-334.  doi: 10.3386/w3606.  Google Scholar

[14] J. A. OcampoC. Rada and L. Taylor, Growth and Policy in Developing Countries: A Structuralist Approach, Columbia University Press, New York, 2009.  doi: 10.7312/ocam15014.  Google Scholar
[15]

V. R. Reddya and B. Behera, Impact of water pollution on rural communities: An economic analysis, Ecol. Econ., 58 (2006), 520-537.  doi: 10.1016/j.ecolecon.2005.07.025.  Google Scholar

[16] G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford, 1964.   Google Scholar
[17]

Y. TangD. Huang and W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.  doi: 10.1093/imamat/hxr005.  Google Scholar

[18]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[19]

Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, Amer. Math. Soc., Providence, 1992. Google Scholar

Figure 1.  Parameter plane and global phase portrait
Figure 2.  Phase portraits of system (1) in a bounded region
Table 1.  Conditions obtained in [1]
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
cases $ \epsilon $ $ \tilde{E} $ interior equilibria
(C1) $ 0<\epsilon<\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C2) $ E_2\le\tilde{E}\le E_1 $ unknown
(C3) $ E_1<\tilde{E}\le E_M $ $ S_3 $ saddle
$ S_4 $ stable node
(C4) $ \tilde{E}>E_M $ $ S_3 $ saddle
(C5) $ \epsilon\ge\tilde\epsilon $ $ 0<\tilde{E}<E_2 $ none
(C6) $ E_2\le\tilde{E}\le E_M $ unknown
(C7) $ \tilde{E}>E_M $ $ S_3 $ saddle
[1]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048

[2]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[3]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[4]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[5]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[6]

Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833

[7]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[8]

Hideaki Takaichi, Izumi Takagi, Shoji Yotsutani. Global bifurcation structure on a shadow system with a source term - Representation of all solutions-. Conference Publications, 2011, 2011 (Special) : 1344-1350. doi: 10.3934/proc.2011.2011.1344

[9]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[10]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137

[11]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks & Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[12]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[13]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[14]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[15]

Andriy Sokolov, Robert Strehl, Stefan Turek. Numerical simulation of chemotaxis models on stationary surfaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2689-2704. doi: 10.3934/dcdsb.2013.18.2689

[16]

Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275

[17]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020232

[18]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks & Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

[19]

David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265

[20]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]