
-
Previous Article
Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain
- DCDS-B Home
- This Issue
-
Next Article
Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps
Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
In this paper, we are mainly concerned with the effect of nonlocal diffusion and dispersal spread on bifurcations of a general activator-inhibitor system in which the activator has a nonlocal dispersal. We find that spatially inhomogeneous patterns always exist if the dispersal rate of the activator is sufficiently small, while a larger dispersal spread and an increase of the activator diffusion inhibit the formation of spatial patterns. Compared with the "spatial averaging" nonlocal dispersal model, our model admits a larger parameter region supporting pattern formations, which is also true if compared with the local reaction-diffusion one when the dispersal spread is small. We also study the existence of nonconstant positive steady states through bifurcation theory and find that there could exist finite or infinite steady state bifurcation points of the inhibitor diffusion constant. As an example of our results, we study a water-biomass model with nonlocal dispersal of plants and show that the water and plant distributions could be inphase and antiphase.
References:
[1] |
E. J. Allen, L. J. S. Allen and X. Gilliam,
Dispersal and competition models for plants, J. Math. Biol., 34 (1996), 455-481.
doi: 10.1007/BF00167944. |
[2] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[3] |
R. S. Cantrell, C. Cosner, Y. Lou and D. Ryan,
Evolutionary stability of ideal dispersal strategies: A nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.
|
[4] |
J.-F. Cao, W.-T. Li and F.-Y. Yang,
Dynamics of a nonlocal SIS epidemic model with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 247-266.
doi: 10.3934/dcdsb.2017013. |
[5] |
S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov and S. G. Mccalla,
Crime modeling with Lévy flights, SIAM J. Appl. Math., 73 (2013), 1703-1720.
doi: 10.1137/120895408. |
[6] |
S. Chen, J. Shi and G. Zhang, Spatial pattern formation in activator-inhibitor models with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. B, to appear.
doi: 10.3934/dcdsb.2020042. |
[7] |
C. Cortázar, J. Coville, M. Elgueta and S. Martínez,
A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.
doi: 10.1016/j.jde.2007.06.002. |
[8] |
C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski,
Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
doi: 10.1016/j.jde.2006.12.002. |
[9] |
C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[10] |
C. Cosner, J. Dávila and S. Martínez,
Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.
doi: 10.1080/17513758.2011.588341. |
[11] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[12] |
L. Eigentler and J. A. Sherratt,
Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 77 (2018), 739-763.
doi: 10.1007/s00285-018-1233-y. |
[13] |
P. Fife, Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, Springer, Berlin, 2003,153–191.
doi: 10.1007/978-3-662-05281-5_3. |
[14] |
J. García-Melián and J. D. Rossi,
On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.
doi: 10.1016/j.jde.2008.04.015. |
[15] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[16] |
K. Gowda, Y. Chen, S. Iams and M. Silber, Assessing the robustness of spatial pattern sequences in a dryland vegetation model, Proc. A, 472 (2016), 25pp.
doi: 10.1098/rspa.2015.0893. |
[17] |
P. Gray and S. K. Scott,
Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chem. Engrg. Sci., 38 (1983), 29-43.
doi: 10.1016/0009-2509(83)80132-8. |
[18] |
P. Gray and S. K. Scott,
Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $\text{A+2B}\rightarrow\text{3B}; \text{B}\rightarrow \text{C}$, Chem. Engrg. Sci., 39 (1984), 1087-1097.
doi: 10.1016/0009-2509(84)87017-7. |
[19] |
P. Gray and S. K. Scott,
Sustained oscillations and other exotic patterns of behavior in isothermal reactions, J. Phys. Chem., 89 (1985), 22-32.
doi: 10.1021/j100247a009. |
[20] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[21] |
C.-Y. Kao, Y. Lou and W. Shen,
Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[22] |
B. J. Kealy and D. J. Wollkind,
A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat enviroment, Bull. Math. Biol., 74 (2012), 803-833.
doi: 10.1007/s11538-011-9688-7. |
[23] |
S. Kinast, Y. R. Zelnik, G. Bel and E. Meron, Interplay between Turing mechanisms can increase pattern diversity, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.078701. |
[24] |
C. A. Klausmeier,
Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
doi: 10.1126/science.284.5421.1826. |
[25] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[26] |
T. Kuniya and J. Wang,
Global dynamics of an SIR epidemic model with nonlocal diffusion, Nonlinear Anal. Real World Appl., 43 (2018), 262-282.
doi: 10.1016/j.nonrwa.2018.03.001. |
[27] |
H. Nakao and A. S. Mikhailov,
Turing patterns in network-organized activator-inhibitor systems, Nature Phys., 6 (2010), 544-550.
doi: 10.1038/nphys1651. |
[28] |
H. Ninomiya, Y. Tanaka and H. Yamamoto,
Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.
doi: 10.1007/s00285-017-1113-x. |
[29] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $\text{C}^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[30] |
J. A. Powell and N. E. Zimmermann,
Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox, Ecology, 85 (2004), 490-506.
doi: 10.1890/02-0535. |
[31] |
Y. Pueyo, S. Kéfi, C. L. Alados and M. Rietkerk,
Dispersal strategies and spatial organization of vegetation in arid ecosystems, Oikos, 117 (2008), 1522-1532.
doi: 10.1111/j.0030-1299.2008.16735.x. |
[32] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[33] |
J. Shi and X. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[34] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[35] |
S. van der Stelt, A. Doelman, G. Hek and J. D. M. Rademacher,
Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39-95.
doi: 10.1007/s00332-012-9139-0. |
[36] |
X. Wang,
Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.
doi: 10.1006/jdeq.2001.4129. |
[37] |
F.-Y. Yang and W.-T. Li,
Dynamics of a nonlocal dispersal SIS epidemic model, Commun. Pure Appl. Anal., 16 (2017), 781-797.
doi: 10.3934/cpaa.2017037. |
[38] |
F.-Y. Yang, W.-T. Li and S. Ruan,
Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differential Equations, 267 (2019), 2011-2051.
doi: 10.1016/j.jde.2019.03.001. |
show all references
References:
[1] |
E. J. Allen, L. J. S. Allen and X. Gilliam,
Dispersal and competition models for plants, J. Math. Biol., 34 (1996), 455-481.
doi: 10.1007/BF00167944. |
[2] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[3] |
R. S. Cantrell, C. Cosner, Y. Lou and D. Ryan,
Evolutionary stability of ideal dispersal strategies: A nonlocal dispersal model, Can. Appl. Math. Q., 20 (2012), 15-38.
|
[4] |
J.-F. Cao, W.-T. Li and F.-Y. Yang,
Dynamics of a nonlocal SIS epidemic model with free boundary, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 247-266.
doi: 10.3934/dcdsb.2017013. |
[5] |
S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov and S. G. Mccalla,
Crime modeling with Lévy flights, SIAM J. Appl. Math., 73 (2013), 1703-1720.
doi: 10.1137/120895408. |
[6] |
S. Chen, J. Shi and G. Zhang, Spatial pattern formation in activator-inhibitor models with nonlocal dispersal, Discrete Contin. Dyn. Syst. Ser. B, to appear.
doi: 10.3934/dcdsb.2020042. |
[7] |
C. Cortázar, J. Coville, M. Elgueta and S. Martínez,
A nonlocal inhomogeneous dispersal process, J. Differential Equations, 241 (2007), 332-358.
doi: 10.1016/j.jde.2007.06.002. |
[8] |
C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski,
Boundary fluxes for nonlocal diffusion, J. Differential Equations, 234 (2007), 360-390.
doi: 10.1016/j.jde.2006.12.002. |
[9] |
C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[10] |
C. Cosner, J. Dávila and S. Martínez,
Evolutionary stability of ideal free nonlocal dispersal, J. Biol. Dyn., 6 (2012), 395-405.
doi: 10.1080/17513758.2011.588341. |
[11] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[12] |
L. Eigentler and J. A. Sherratt,
Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 77 (2018), 739-763.
doi: 10.1007/s00285-018-1233-y. |
[13] |
P. Fife, Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, Springer, Berlin, 2003,153–191.
doi: 10.1007/978-3-662-05281-5_3. |
[14] |
J. García-Melián and J. D. Rossi,
On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.
doi: 10.1016/j.jde.2008.04.015. |
[15] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[16] |
K. Gowda, Y. Chen, S. Iams and M. Silber, Assessing the robustness of spatial pattern sequences in a dryland vegetation model, Proc. A, 472 (2016), 25pp.
doi: 10.1098/rspa.2015.0893. |
[17] |
P. Gray and S. K. Scott,
Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chem. Engrg. Sci., 38 (1983), 29-43.
doi: 10.1016/0009-2509(83)80132-8. |
[18] |
P. Gray and S. K. Scott,
Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $\text{A+2B}\rightarrow\text{3B}; \text{B}\rightarrow \text{C}$, Chem. Engrg. Sci., 39 (1984), 1087-1097.
doi: 10.1016/0009-2509(84)87017-7. |
[19] |
P. Gray and S. K. Scott,
Sustained oscillations and other exotic patterns of behavior in isothermal reactions, J. Phys. Chem., 89 (1985), 22-32.
doi: 10.1021/j100247a009. |
[20] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[21] |
C.-Y. Kao, Y. Lou and W. Shen,
Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551. |
[22] |
B. J. Kealy and D. J. Wollkind,
A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat enviroment, Bull. Math. Biol., 74 (2012), 803-833.
doi: 10.1007/s11538-011-9688-7. |
[23] |
S. Kinast, Y. R. Zelnik, G. Bel and E. Meron, Interplay between Turing mechanisms can increase pattern diversity, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.078701. |
[24] |
C. A. Klausmeier,
Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
doi: 10.1126/science.284.5421.1826. |
[25] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[26] |
T. Kuniya and J. Wang,
Global dynamics of an SIR epidemic model with nonlocal diffusion, Nonlinear Anal. Real World Appl., 43 (2018), 262-282.
doi: 10.1016/j.nonrwa.2018.03.001. |
[27] |
H. Nakao and A. S. Mikhailov,
Turing patterns in network-organized activator-inhibitor systems, Nature Phys., 6 (2010), 544-550.
doi: 10.1038/nphys1651. |
[28] |
H. Ninomiya, Y. Tanaka and H. Yamamoto,
Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.
doi: 10.1007/s00285-017-1113-x. |
[29] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $\text{C}^1$ Fredholm mappings of index $0$, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[30] |
J. A. Powell and N. E. Zimmermann,
Multiscale analysis of active seed dispersal contributes to resolving Reid's paradox, Ecology, 85 (2004), 490-506.
doi: 10.1890/02-0535. |
[31] |
Y. Pueyo, S. Kéfi, C. L. Alados and M. Rietkerk,
Dispersal strategies and spatial organization of vegetation in arid ecosystems, Oikos, 117 (2008), 1522-1532.
doi: 10.1111/j.0030-1299.2008.16735.x. |
[32] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[33] |
J. Shi and X. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[34] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[35] |
S. van der Stelt, A. Doelman, G. Hek and J. D. M. Rademacher,
Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), 39-95.
doi: 10.1007/s00332-012-9139-0. |
[36] |
X. Wang,
Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461.
doi: 10.1006/jdeq.2001.4129. |
[37] |
F.-Y. Yang and W.-T. Li,
Dynamics of a nonlocal dispersal SIS epidemic model, Commun. Pure Appl. Anal., 16 (2017), 781-797.
doi: 10.3934/cpaa.2017037. |
[38] |
F.-Y. Yang, W.-T. Li and S. Ruan,
Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differential Equations, 267 (2019), 2011-2051.
doi: 10.1016/j.jde.2019.03.001. |




[1] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[2] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[3] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021010 |
[4] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[5] |
Pankaj Kumar Tiwari, Rajesh Kumar Singh, Subhas Khajanchi, Yun Kang, Arvind Kumar Misra. A mathematical model to restore water quality in urban lakes using Phoslock. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3143-3175. doi: 10.3934/dcdsb.2020223 |
[6] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003 |
[7] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[8] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[9] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[10] |
Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021064 |
[11] |
Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256 |
[12] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[13] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[14] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021129 |
[15] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[16] |
Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021077 |
[17] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[18] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[19] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[20] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]