doi: 10.3934/dcdsb.2020297

Scattering and strong instability of the standing waves for dipolar quantum gases

School of Mathematical Science, and V.C. & V.R. Key Lab of Sichuan Province, Sichuan Normal University, Chengdu 610068, China

* Corresponding author: Juan Huang

Received  June 2020 Revised  August 2020 Published  October 2020

This paper concerns the nonlinear Schrödinger equation which describes the dipolar quantum gases. When the energy plus mass is lower than the mass of the ground state, we find we can use the kinetic energy and mass of the initial data to divide the subspace into two parts. If the initial data are in one of the parts, the solutions exist globally. Moreover, by using the Kening-Merle roadmap method, we find that these solutions will scatter. If initial data are in the other part, the solutions will collapse. And hence, the standing waves are strong unstable.

Citation: Juan Huang. Scattering and strong instability of the standing waves for dipolar quantum gases. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020297
References:
[1]

P. Antonelli and C. Sparber, Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.  doi: 10.1016/j.physd.2010.10.004.  Google Scholar

[2]

W. BaoY. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[3]

J. Bellazzini and L. Forcella, Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.  doi: 10.1016/j.jfa.2019.04.005.  Google Scholar

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297. doi: 10.1007/BF02788703.  Google Scholar

[5]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

M. S. EllioJ. J. Valentini and D. W. Chandler, Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.  doi: 10.1126/science.1090679.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.   Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

J. Huang and J. Zhang, Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.  doi: 10.1016/j.aml.2017.03.002.  Google Scholar

[15]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

L. Ma and P. Cao, The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.  doi: 10.1016/j.jmaa.2011.02.031.  Google Scholar

[19]

L. Ma and J. Wang, Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.  doi: 10.4153/CMB-2011-181-2.  Google Scholar

[20]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[21]

M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403. doi: 10.1103/PhysRevLett.100.170403.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[23]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.041604.  Google Scholar

show all references

References:
[1]

P. Antonelli and C. Sparber, Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.  doi: 10.1016/j.physd.2010.10.004.  Google Scholar

[2]

W. BaoY. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[3]

J. Bellazzini and L. Forcella, Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.  doi: 10.1016/j.jfa.2019.04.005.  Google Scholar

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297. doi: 10.1007/BF02788703.  Google Scholar

[5]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

M. S. EllioJ. J. Valentini and D. W. Chandler, Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.  doi: 10.1126/science.1090679.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.   Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

J. Huang and J. Zhang, Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.  doi: 10.1016/j.aml.2017.03.002.  Google Scholar

[15]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

L. Ma and P. Cao, The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.  doi: 10.1016/j.jmaa.2011.02.031.  Google Scholar

[19]

L. Ma and J. Wang, Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.  doi: 10.4153/CMB-2011-181-2.  Google Scholar

[20]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[21]

M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403. doi: 10.1103/PhysRevLett.100.170403.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[23]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.041604.  Google Scholar

[1]

Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239

[2]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[3]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[4]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[6]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[7]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[8]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[9]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[10]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[11]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[12]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[13]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[14]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[15]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[16]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[18]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[19]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[20]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

2019 Impact Factor: 1.27

Article outline

[Back to Top]