doi: 10.3934/dcdsb.2020297

Scattering and strong instability of the standing waves for dipolar quantum gases

School of Mathematical Science, and V.C. & V.R. Key Lab of Sichuan Province, Sichuan Normal University, Chengdu 610068, China

* Corresponding author: Juan Huang

Received  June 2020 Revised  August 2020 Published  October 2020

This paper concerns the nonlinear Schrödinger equation which describes the dipolar quantum gases. When the energy plus mass is lower than the mass of the ground state, we find we can use the kinetic energy and mass of the initial data to divide the subspace into two parts. If the initial data are in one of the parts, the solutions exist globally. Moreover, by using the Kening-Merle roadmap method, we find that these solutions will scatter. If initial data are in the other part, the solutions will collapse. And hence, the standing waves are strong unstable.

Citation: Juan Huang. Scattering and strong instability of the standing waves for dipolar quantum gases. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020297
References:
[1]

P. Antonelli and C. Sparber, Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.  doi: 10.1016/j.physd.2010.10.004.  Google Scholar

[2]

W. BaoY. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[3]

J. Bellazzini and L. Forcella, Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.  doi: 10.1016/j.jfa.2019.04.005.  Google Scholar

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297. doi: 10.1007/BF02788703.  Google Scholar

[5]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

M. S. EllioJ. J. Valentini and D. W. Chandler, Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.  doi: 10.1126/science.1090679.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.   Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

J. Huang and J. Zhang, Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.  doi: 10.1016/j.aml.2017.03.002.  Google Scholar

[15]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

L. Ma and P. Cao, The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.  doi: 10.1016/j.jmaa.2011.02.031.  Google Scholar

[19]

L. Ma and J. Wang, Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.  doi: 10.4153/CMB-2011-181-2.  Google Scholar

[20]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[21]

M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403. doi: 10.1103/PhysRevLett.100.170403.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[23]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.041604.  Google Scholar

show all references

References:
[1]

P. Antonelli and C. Sparber, Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.  doi: 10.1016/j.physd.2010.10.004.  Google Scholar

[2]

W. BaoY. Cai and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.  doi: 10.1016/j.jcp.2010.07.001.  Google Scholar

[3]

J. Bellazzini and L. Forcella, Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.  doi: 10.1016/j.jfa.2019.04.005.  Google Scholar

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297. doi: 10.1007/BF02788703.  Google Scholar

[5]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[6]

R. CarlesP. A. Markowich and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.  doi: 10.1088/0951-7715/21/11/006.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

M. S. EllioJ. J. Valentini and D. W. Chandler, Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.  doi: 10.1126/science.1090679.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.   Google Scholar

[13]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[14]

J. Huang and J. Zhang, Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.  doi: 10.1016/j.aml.2017.03.002.  Google Scholar

[15]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.  Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[18]

L. Ma and P. Cao, The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.  doi: 10.1016/j.jmaa.2011.02.031.  Google Scholar

[19]

L. Ma and J. Wang, Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.  doi: 10.4153/CMB-2011-181-2.  Google Scholar

[20]

J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.  Google Scholar

[21]

M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403. doi: 10.1103/PhysRevLett.100.170403.  Google Scholar

[22]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.  doi: 10.1007/BF01208265.  Google Scholar

[23]

S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000). doi: 10.1103/PhysRevA.61.041604.  Google Scholar

[1]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[2]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[5]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[6]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[7]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[8]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[9]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[12]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[13]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[20]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

2019 Impact Factor: 1.27

Article outline

[Back to Top]