doi: 10.3934/dcdsb.2020300

Guaranteed cost control of discrete-time switched saturated systems

School of Information and Control Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China

* Corresponding author: Xinquan Zhang

Received  August 2019 Revised  June 2020 Published  October 2020

The problem of guaranteed cost control is investigated for a class of discrete-time saturated switched systems. The purpose is to design the switched law and state feedback control law such that the closed-loop system is asymptotically stable and the upper-bound of the cost function is minimized. Based on the multiple Lyapunov functions approach, some sufficient conditions for the existence of guaranteed cost controllers are obtained. Furthermore, a convex optimization problem with linear matrix inequalities (LMI) constraints is formulated to determine the minimum upper-bound of the cost function. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

Citation: Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020300
References:
[1]

A. BenzaouiaO. Akhrif and L. Saydy, Stabilisation and control synthesis of switching systems subject to actuator saturation, Int. J. Syst. Sci., 41 (2010), 397-409.  doi: 10.1080/00207720903045791.  Google Scholar

[2]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Contr., 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[3]

W. H. ChenJ. X. Xu and Z. H. Guan, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays, IEEE Trans. on Automatic Control, 48 (2003), 2270-2277.  doi: 10.1109/TAC.2003.820165.  Google Scholar

[4]

D. Cheng, Stabilization of planar switched systems, System & Control Letters, 51 (2004), 79-88.  doi: 10.1016/S0167-6911(03)00208-1.  Google Scholar

[5]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Contr., 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[6]

H. FangZ. Lin and T. Hu, Analysis of linear systems in the presence of actuator saturation and $L_2$-disturbances, Automatica, 40 (2004), 1229-1238.  doi: 10.1016/j.automatica.2004.02.009.  Google Scholar

[7]

J. M. Gomes da Silva and S. Tarbouriech, Anti-windup design with guaranteed regions of stability for discrete-time linear systems, Systems & Control Letters, 55 (2006), 184-192.  doi: 10.1016/j.sysconle.2005.07.001.  Google Scholar

[8]

J. M. Gomes da SilvaD. LimonT. Alamo and E. F. Camacho, Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints, IEEE Trans. Automat. Contr., 53 (2008), 2367-2372.  doi: 10.1109/TAC.2008.2007521.  Google Scholar

[9]

T. HuZ. Lin and B. M. Chen, Analysis and design for discrete-time linear systems subject to actuator saturation, Systems & Control Letters, 45 (2002), 97-112.  doi: 10.1016/S0167-6911(01)00168-2.  Google Scholar

[10]

M. Jungers and J. Daafouz, Guaranteed cost certification for discrete-time linear switched systems with a dwell time, IEEE Trans. Automat. Contr., 58 (2013), 768-772.  doi: 10.1109/TAC.2012.2211441.  Google Scholar

[11]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Contr., 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[12]

L. LiuZ. WangZ. Huang and H. Zhang, Adaptive predefined performance control for MIMO systems with unknown direction via generalized fuzzy hyperbolic model, IEEE Trans. Fuzzy Syst., 25 (2017), 527-542.  doi: 10.1109/TFUZZ.2016.2566803.  Google Scholar

[13]

L. Lu and Z. Lin, Design of switched linear systems in the presence of actuator saturation, IEEE Trans. Automat. Contr., 53 (2008), 1536-1542.  doi: 10.1109/TAC.2008.921021.  Google Scholar

[14]

L. Lu and Z. Lin, A switching anti-windup design using multiple Lyapunov functions, IEEE Trans. Automat. Contr., 55 (2010), 142-148.  doi: 10.1109/TAC.2009.2033753.  Google Scholar

[15]

W. Ni and D. Cheng, Control of switched linear systems with input saturation, Int. J. Syst. Sci., 41 (2010), 1057-1065.  doi: 10.1080/00207720903201865.  Google Scholar

[16]

W. Rui and J. Zhao, Guaranteed cost control for a class of uncertain delay systems with actuator failures based on switching method, Int. J. Contr. Automat. Syst., 5 (2007), 492-500.   Google Scholar

[17]

X. M. SunG. P. LiuD. Rees and W. Wang, Delay-dependent stability for discrete systems with large delay sequence based on switching techniques, Automatica, 44 (2008), 2902-2908.  doi: 10.1016/j.automatica.2008.04.006.  Google Scholar

[18]

D. WangS. WangS. YuanB. Cai and L. Zhang, Guaranteed performance control of switched linear systems: A differential-Riccati-equation-based approach, Peer-to-Peer Networking and Applications, 12 (2019), 1810-1819.  doi: 10.1007/s12083-019-00748-w.  Google Scholar

[19]

L. Yu and J. Chu, An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica, 35 (1999), 1155-1159.  doi: 10.1016/S0005-1098(99)00007-2.  Google Scholar

[20]

X. Zhang, J. Zhao and G. M. Dimirovski, Robust state feedback stabilization of uncertain switched linear systems subject to actuator saturation, Proceedings of the 2010 American Control Conference, (2010), 3269–3274. doi: 10.1155/2015/521636.  Google Scholar

[21]

J. Zhang and T. Raïssi, Saturation control of switched nonlinear systems, Nonlinear Analysis: Hybrid Systems, 32 (2019), 320-336.  doi: 10.1016/j.nahs.2019.01.005.  Google Scholar

[22]

X. Zhang and J. Zhao, Guaranteed cost control of uncertain discrete-time switched linear systems with actuator saturation, The 25th Chinese Control and Decision Conference, (2013), 1341–1345.  Google Scholar

[23]

X. ZhangJ. Zhao and G. M. Dimirovski, $L_2$-Gain analysis and control synthesis of uncertain discrete-time switched linear systems with time delay and actuator saturation, Int. J. Contr., 84 (2011), 1746-1758.  doi: 10.1080/00207179.2011.625046.  Google Scholar

[24]

J. Zhao and D. J. Hill, On stability, and $L_2$-gain and $H_{\infty}$ control for switched systems, Automatica, 44 (2008), 1220-1232.  doi: 10.1016/j.automatica.2007.10.011.  Google Scholar

[25]

Q. Zheng and F. Wu, Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions, Systems & Control Letters, 57 (2008), 896-903.  doi: 10.1016/j.sysconle.2007.12.011.  Google Scholar

[26]

Z. Zuo, Z. Jia, Y. Wang, H. Zhao and G. Zhang, Guaranteed cost control for discrete-time uncertain systems with saturating actuators, Proceedings of the 2008 American Control Conference, (2008), 3632–3637. doi: 10.1109/ACC.2008.4587057.  Google Scholar

[27]

Z. Zuo, L. Liu, Y. Wang, H. Zhao and G. Zhang, Guaranteed cost control of linear time-delay systems with input constraints: The Razumikhin functional approach, Proceedings of the 27th China Control Conference, (2008), 440–443. Google Scholar

show all references

References:
[1]

A. BenzaouiaO. Akhrif and L. Saydy, Stabilisation and control synthesis of switching systems subject to actuator saturation, Int. J. Syst. Sci., 41 (2010), 397-409.  doi: 10.1080/00207720903045791.  Google Scholar

[2]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Contr., 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[3]

W. H. ChenJ. X. Xu and Z. H. Guan, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays, IEEE Trans. on Automatic Control, 48 (2003), 2270-2277.  doi: 10.1109/TAC.2003.820165.  Google Scholar

[4]

D. Cheng, Stabilization of planar switched systems, System & Control Letters, 51 (2004), 79-88.  doi: 10.1016/S0167-6911(03)00208-1.  Google Scholar

[5]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Automat. Contr., 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[6]

H. FangZ. Lin and T. Hu, Analysis of linear systems in the presence of actuator saturation and $L_2$-disturbances, Automatica, 40 (2004), 1229-1238.  doi: 10.1016/j.automatica.2004.02.009.  Google Scholar

[7]

J. M. Gomes da Silva and S. Tarbouriech, Anti-windup design with guaranteed regions of stability for discrete-time linear systems, Systems & Control Letters, 55 (2006), 184-192.  doi: 10.1016/j.sysconle.2005.07.001.  Google Scholar

[8]

J. M. Gomes da SilvaD. LimonT. Alamo and E. F. Camacho, Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints, IEEE Trans. Automat. Contr., 53 (2008), 2367-2372.  doi: 10.1109/TAC.2008.2007521.  Google Scholar

[9]

T. HuZ. Lin and B. M. Chen, Analysis and design for discrete-time linear systems subject to actuator saturation, Systems & Control Letters, 45 (2002), 97-112.  doi: 10.1016/S0167-6911(01)00168-2.  Google Scholar

[10]

M. Jungers and J. Daafouz, Guaranteed cost certification for discrete-time linear switched systems with a dwell time, IEEE Trans. Automat. Contr., 58 (2013), 768-772.  doi: 10.1109/TAC.2012.2211441.  Google Scholar

[11]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Contr., 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[12]

L. LiuZ. WangZ. Huang and H. Zhang, Adaptive predefined performance control for MIMO systems with unknown direction via generalized fuzzy hyperbolic model, IEEE Trans. Fuzzy Syst., 25 (2017), 527-542.  doi: 10.1109/TFUZZ.2016.2566803.  Google Scholar

[13]

L. Lu and Z. Lin, Design of switched linear systems in the presence of actuator saturation, IEEE Trans. Automat. Contr., 53 (2008), 1536-1542.  doi: 10.1109/TAC.2008.921021.  Google Scholar

[14]

L. Lu and Z. Lin, A switching anti-windup design using multiple Lyapunov functions, IEEE Trans. Automat. Contr., 55 (2010), 142-148.  doi: 10.1109/TAC.2009.2033753.  Google Scholar

[15]

W. Ni and D. Cheng, Control of switched linear systems with input saturation, Int. J. Syst. Sci., 41 (2010), 1057-1065.  doi: 10.1080/00207720903201865.  Google Scholar

[16]

W. Rui and J. Zhao, Guaranteed cost control for a class of uncertain delay systems with actuator failures based on switching method, Int. J. Contr. Automat. Syst., 5 (2007), 492-500.   Google Scholar

[17]

X. M. SunG. P. LiuD. Rees and W. Wang, Delay-dependent stability for discrete systems with large delay sequence based on switching techniques, Automatica, 44 (2008), 2902-2908.  doi: 10.1016/j.automatica.2008.04.006.  Google Scholar

[18]

D. WangS. WangS. YuanB. Cai and L. Zhang, Guaranteed performance control of switched linear systems: A differential-Riccati-equation-based approach, Peer-to-Peer Networking and Applications, 12 (2019), 1810-1819.  doi: 10.1007/s12083-019-00748-w.  Google Scholar

[19]

L. Yu and J. Chu, An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica, 35 (1999), 1155-1159.  doi: 10.1016/S0005-1098(99)00007-2.  Google Scholar

[20]

X. Zhang, J. Zhao and G. M. Dimirovski, Robust state feedback stabilization of uncertain switched linear systems subject to actuator saturation, Proceedings of the 2010 American Control Conference, (2010), 3269–3274. doi: 10.1155/2015/521636.  Google Scholar

[21]

J. Zhang and T. Raïssi, Saturation control of switched nonlinear systems, Nonlinear Analysis: Hybrid Systems, 32 (2019), 320-336.  doi: 10.1016/j.nahs.2019.01.005.  Google Scholar

[22]

X. Zhang and J. Zhao, Guaranteed cost control of uncertain discrete-time switched linear systems with actuator saturation, The 25th Chinese Control and Decision Conference, (2013), 1341–1345.  Google Scholar

[23]

X. ZhangJ. Zhao and G. M. Dimirovski, $L_2$-Gain analysis and control synthesis of uncertain discrete-time switched linear systems with time delay and actuator saturation, Int. J. Contr., 84 (2011), 1746-1758.  doi: 10.1080/00207179.2011.625046.  Google Scholar

[24]

J. Zhao and D. J. Hill, On stability, and $L_2$-gain and $H_{\infty}$ control for switched systems, Automatica, 44 (2008), 1220-1232.  doi: 10.1016/j.automatica.2007.10.011.  Google Scholar

[25]

Q. Zheng and F. Wu, Output feedback control of saturated discrete-time linear systems using parameter-dependent Lyapunov functions, Systems & Control Letters, 57 (2008), 896-903.  doi: 10.1016/j.sysconle.2007.12.011.  Google Scholar

[26]

Z. Zuo, Z. Jia, Y. Wang, H. Zhao and G. Zhang, Guaranteed cost control for discrete-time uncertain systems with saturating actuators, Proceedings of the 2008 American Control Conference, (2008), 3632–3637. doi: 10.1109/ACC.2008.4587057.  Google Scholar

[27]

Z. Zuo, L. Liu, Y. Wang, H. Zhao and G. Zhang, Guaranteed cost control of linear time-delay systems with input constraints: The Razumikhin functional approach, Proceedings of the 27th China Control Conference, (2008), 440–443. Google Scholar

[1]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[2]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[3]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[4]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[5]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[6]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[7]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[8]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[9]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[10]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[17]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[18]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[19]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[20]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

2019 Impact Factor: 1.27

Article outline

[Back to Top]