doi: 10.3934/dcdsb.2020301

Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile

* Corresponding author: Gladis Torres-Espino

Received  February 2020 Revised  August 2020 Published  October 2020

In this paper, we consider a mathematical model of a tumor-immune system interaction when a periodic immunotherapy treatment is applied. We give sufficient conditions, using averaging theory, for the existence and stability of periodic solutions in such system as a function of the six parameters associated to this problem. Finally, we provide examples where our results are applied.

Citation: Gladis Torres-Espino, Claudio Vidal. Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020301
References:
[1]

P. AmsterL. Berezansky and L. Idels, Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.  doi: 10.1016/j.nonrwa.2011.07.035.  Google Scholar

[2]

A. d'Onofrio, A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

A. d'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[4]

D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.  doi: 10.1016/S1470-2045(06)70985-8.  Google Scholar

[5]

V. A. KuznetsovI. A. MakalkinM. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.  doi: 10.1007/BF02460644.  Google Scholar

[6]

Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.  doi: 10.1155/2014/172923.  Google Scholar

[7]

O. Sotolongo-CostaL. Morales-MolinaD. Rodríguez-PérezJ. C. Antonraz and M. Chacón-Reyes, Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.  doi: 10.1016/S0167-2789(03)00005-8.  Google Scholar

[8]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-61453-8.  Google Scholar

show all references

References:
[1]

P. AmsterL. Berezansky and L. Idels, Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.  doi: 10.1016/j.nonrwa.2011.07.035.  Google Scholar

[2]

A. d'Onofrio, A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

A. d'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[4]

D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.  doi: 10.1016/S1470-2045(06)70985-8.  Google Scholar

[5]

V. A. KuznetsovI. A. MakalkinM. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.  doi: 10.1007/BF02460644.  Google Scholar

[6]

Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.  doi: 10.1155/2014/172923.  Google Scholar

[7]

O. Sotolongo-CostaL. Morales-MolinaD. Rodríguez-PérezJ. C. Antonraz and M. Chacón-Reyes, Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.  doi: 10.1016/S0167-2789(03)00005-8.  Google Scholar

[8]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-61453-8.  Google Scholar

Figure 1.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X-\frac{\overline{\beta}}{S} $.
Figure 2.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $
Figure 3.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X-\frac{\overline{\beta}}{S} $, when $ K-D>0 $
Figure 4.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $.
Figure 5.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $.
Figure 6.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = -\frac{DA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $
Figure 7.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.1, with initial conditions $ x_0 = 1/19+10^{-40} $ and $ y_0 = 100000+10^{-40} $
Figure 8.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.2, with initial conditions $ x_0 = 5/32(-3+\sqrt{73})+10^{-40} $ and $ y_0 = 80000+10^{-40} $
Figure 9.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.3, with initial conditions $ x_0 = 1/60 (-27 + \sqrt{1009})+10^{-40} $ and $ y_0 = 50000+10^{-40} $
Figure 10.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.4, with initial conditions $ x_0 = 1.0099381+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 11.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 1.15201+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 12.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 9.99873+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 13.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.6, with initial conditions $ x_0 = 0.0123435+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Table 1.  Definition of the parameters in model (2)
Functions Biological meaning
$ \xi(x) $ Growth rate of the tumor
$ \phi(x)y $ Functional response
$ g(x) $ External inflow of effector cells
$ \beta(x) $ Tumor-stimulated proliferation rate of effector cells
$ \mu(x) $ Tumor-induced loss of effector cells
$ \sigma g(x) $ Influx of effector cells
$ \theta(\omega t) $ Immunotherapy
Functions Biological meaning
$ \xi(x) $ Growth rate of the tumor
$ \phi(x)y $ Functional response
$ g(x) $ External inflow of effector cells
$ \beta(x) $ Tumor-stimulated proliferation rate of effector cells
$ \mu(x) $ Tumor-induced loss of effector cells
$ \sigma g(x) $ Influx of effector cells
$ \theta(\omega t) $ Immunotherapy
Table 2.  Definition of the parameters in model (3)
Parameter Biological meaning
$ a $ Intrinsic growth rate of the tumor
$ b $ Death malignant cells rate due to interaction with lymphocyte cells
$ d $ Increased lymphocyte rate due to interaction with malignant cells
$ f $ Death rate of the lymphocytes
$ \kappa $ Immunosuppression coefficient
$ \sigma g(x) $ Influx external of effector cells
$ \omega $ Immunotherapy dosage frequency
Parameter Biological meaning
$ a $ Intrinsic growth rate of the tumor
$ b $ Death malignant cells rate due to interaction with lymphocyte cells
$ d $ Increased lymphocyte rate due to interaction with malignant cells
$ f $ Death rate of the lymphocytes
$ \kappa $ Immunosuppression coefficient
$ \sigma g(x) $ Influx external of effector cells
$ \omega $ Immunotherapy dosage frequency
[1]

Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumor-Immune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 37-57. doi: 10.3934/mbe.2013.10.37

[2]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020282

[3]

Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2391-2406. doi: 10.3934/dcdsb.2020015

[4]

Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060

[5]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[6]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020157

[7]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[8]

J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 39-58. doi: 10.3934/dcdsb.2004.4.39

[9]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[10]

Lifeng Han, Changhan He, Yang Kuang. Dynamics of a model of tumor-immune interaction with time delay and noise. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2347-2363. doi: 10.3934/dcdss.2020140

[11]

Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031

[12]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[13]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[14]

Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 573-583. doi: 10.3934/mbe.2009.6.573

[15]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[16]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

[17]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[18]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[19]

Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050

[20]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (4)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]