\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy

  • * Corresponding author: Gladis Torres-Espino

    * Corresponding author: Gladis Torres-Espino 
Abstract / Introduction Full Text(HTML) Figure(13) / Table(2) Related Papers Cited by
  • In this paper, we consider a mathematical model of a tumor-immune system interaction when a periodic immunotherapy treatment is applied. We give sufficient conditions, using averaging theory, for the existence and stability of periodic solutions in such system as a function of the six parameters associated to this problem. Finally, we provide examples where our results are applied.

    Mathematics Subject Classification: Primary: 34C25; Secondary: 34C29, 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X-\frac{\overline{\beta}}{S} $.

    Figure 2.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $

    Figure 3.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X-\frac{\overline{\beta}}{S} $, when $ K-D>0 $

    Figure 4.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $.

    Figure 5.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $.

    Figure 6.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = -\frac{DA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $

    Figure 7.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.1, with initial conditions $ x_0 = 1/19+10^{-40} $ and $ y_0 = 100000+10^{-40} $

    Figure 8.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.2, with initial conditions $ x_0 = 5/32(-3+\sqrt{73})+10^{-40} $ and $ y_0 = 80000+10^{-40} $

    Figure 9.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.3, with initial conditions $ x_0 = 1/60 (-27 + \sqrt{1009})+10^{-40} $ and $ y_0 = 50000+10^{-40} $

    Figure 10.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.4, with initial conditions $ x_0 = 1.0099381+10^{-40} $ and $ y_0 = 25000+10^{-40} $

    Figure 11.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 1.15201+10^{-40} $ and $ y_0 = 25000+10^{-40} $

    Figure 12.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 9.99873+10^{-40} $ and $ y_0 = 25000+10^{-40} $

    Figure 13.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.6, with initial conditions $ x_0 = 0.0123435+10^{-40} $ and $ y_0 = 25000+10^{-40} $

    Table 1.  Definition of the parameters in model (2)

    Functions Biological meaning
    $ \xi(x) $ Growth rate of the tumor
    $ \phi(x)y $ Functional response
    $ g(x) $ External inflow of effector cells
    $ \beta(x) $ Tumor-stimulated proliferation rate of effector cells
    $ \mu(x) $ Tumor-induced loss of effector cells
    $ \sigma g(x) $ Influx of effector cells
    $ \theta(\omega t) $ Immunotherapy
     | Show Table
    DownLoad: CSV

    Table 2.  Definition of the parameters in model (3)

    Parameter Biological meaning
    $ a $ Intrinsic growth rate of the tumor
    $ b $ Death malignant cells rate due to interaction with lymphocyte cells
    $ d $ Increased lymphocyte rate due to interaction with malignant cells
    $ f $ Death rate of the lymphocytes
    $ \kappa $ Immunosuppression coefficient
    $ \sigma g(x) $ Influx external of effector cells
    $ \omega $ Immunotherapy dosage frequency
     | Show Table
    DownLoad: CSV
  • [1] P. AmsterL. Berezansky and L. Idels, Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.  doi: 10.1016/j.nonrwa.2011.07.035.
    [2] A. d'Onofrio, A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.
    [3] A. d'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.
    [4] D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.  doi: 10.1016/S1470-2045(06)70985-8.
    [5] V. A. KuznetsovI. A. MakalkinM. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.  doi: 10.1007/BF02460644.
    [6] Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.  doi: 10.1155/2014/172923.
    [7] O. Sotolongo-CostaL. Morales-MolinaD. Rodríguez-PérezJ. C. Antonraz and M. Chacón-Reyes, Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.  doi: 10.1016/S0167-2789(03)00005-8.
    [8] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-61453-8.
  • 加载中

Figures(13)

Tables(2)

SHARE

Article Metrics

HTML views(1900) PDF downloads(315) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return