# American Institute of Mathematical Sciences

August  2021, 26(8): 4549-4565. doi: 10.3934/dcdsb.2020302

## The effect of caputo fractional difference operator on a novel game theory model

 1 Laboratory of Dynamical Systems and Control, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria 2 Department of Mathematics, Faculty of Science, University of Ha'il, Kingdom of Saudi Arabia 3 Department of Mathematics and Computer Science, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria 4 Mathematics Department, Faculty of Science, University of Ha'il, Kingdom of Saudi Arabia 5 Universita del Salento, Dipartimento Ingegneria Innovazione, 73100 Lecce, Italy 6 Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* Corresponding author: phamvietthanh@tdtu.edu.vn

Received  May 2020 Revised  August 2020 Published  August 2021 Early access  October 2020

It is well-known that fractional-order discrete-time systems have a major advantage over their integer-order counterparts, because they can better describe the memory characteristics and the historical dependence of the underlying physical phenomenon. This paper presents a novel fractional-order triopoly game with bounded rationality, where three firms producing differentiated products compete over a common market. The proposed game theory model consists of three fractional-order difference equations and is characterized by eight equilibria, including the Nash fixed point. When suitable values for the fractional order are considered, the stability of the Nash equilibrium is lost via a Neimark-Sacker bifurcation or via a flip bifurcation. As a consequence, a number of chaotic attractors appear in the system dynamics, indicating that the behaviour of the economic model becomes unpredictable, independently of the actions of the considered firm. The presence of chaos is confirmed via both the computation of the maximum Lyapunov exponent and the 0-1 test. Finally, an entropy algorithm is used to measure the complexity of the proposed game theory model.

Citation: Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302
##### References:
 [1] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602-1611.  doi: 10.1016/j.camwa.2011.03.036. [2] A. Al-khedhairi, Differentiated Cournot duopoly game with fractional-order and its discretization, Engineering Computations, 36 (2019), 26. [3] A. Al-Khedhairi, Dynamics of a Cournot duopoly game with a generalized bounded rationality, Complexity, 2020 (2020), 8903183. [4] G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556-566.  doi: 10.1016/j.mcm.2010.03.055. [5] S. S. Askar and A. Al-Khedhairi, Analysis of a four-firm competition based on a generalized bounded rationality and different mechanisms, Complexity, 2019 (2019), 6352796. doi: 10.1155/2019/6352796. [6] F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I, 3 (2009), 1-12.  doi: 10.14232/ejqtde.2009.4.3. [7] H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17064255. [8] J. Cermak, I. Gyori and L. Nechvatal, On explicit stability conditions for a linear fractional difference system, Fractional Calculus and Applied Analysis, 18 (2015), 651-672. doi: 10.1515/fca-2015-0040. [9] G. A. Gottwald and I. Melbourne, On the implementation of the 0-1 test for chaos, SIAM J. Appl. Dyn. Syst., 8 (2009), 129-145.  doi: 10.1137/080718851. [10] N. Laskin, Fractional market dynamics, Physica A: Statist. Mech. Appl., 287 (2000), 482-492.  doi: 10.1016/S0378-4371(00)00387-3. [11] Y. Li, C. Sun, H. Ling, A. Lu and Y. Liu, Oligopolies price game in fractional order system, Chaos, Solitons & Fractals, 132 (2020), 109583. doi: 10.1016/j.chaos.2019.109583. [12] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA., 88 (1991), 2297–2301. doi: 10.1073/pnas.88.6.2297. [13] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA., 88 (1991), 2297-2301.  doi: 10.1073/pnas.88.6.2297. [14] F. Sapuppo, M. Bucolo, M. Intaglietta, L. Fortuna and P. Arena, A cellular nonlinear network: Real-time technology for the analysis of microfluidic phenomena in blood vessels, Nanotechnology, 17 (2006), S54. doi: 10.1088/0957-4484/17/4/009. [15] T. $\breve{S}$kovránek, I. Podlubny and I. Petrá$\breve{s}$, Modeling of the national economies in state-space: A fractional calculus approach, Economic Modelling, 29 (2012), 1322-1327. [16] H. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlin. Sci. Numer. Simul., 64 (2018), 213-231.  doi: 10.1016/j.cnsns.2018.04.019. [17] I. Tejado, D. Valério and N. Valério, Fractional calculus in economic growth modeling. The Portuguese case, in ICFDA'14 International Conference on Fractional Differentiation and Its Applications, IEEE, 2014, 1–6. [18] B. Xin, W. Peng and Y. Kwon, A fractional-order difference Cournot duopoly game with long memory, preprint, arXiv: 1903.04305. doi: 10.1016/j.physa.2020.124993. [19] B. Xin and Y. Li, 0-1 test for chaos in a fractional order financial system with investment incentive, Abstract and Applied Analysis, 2013 (2013), 876298. doi: 10.1155/2013/876298. [20] B. Xin, W. Peng and L. Guerrini, A continuous time Bertrand duopoly game with fractional delay and conformable derivative: Modelling, discretization process, Hopf bifurcation and chaos, Frontiers in Physics, 7 (2019), 84. [21] C. Xu, M. Liao, P. Li, Q. Xiao and S. Yuan, Control strategy for a fractional-order chaotic financial model, Complexity, 2019 (2019), 2989204. doi: 10.1155/2019/2989204. [22] A. Yousefpour, H. Jahanshahi, J. M. Munoz-Pacheco, S. Bekiros and Z. Wei, A fractional-order hyper-chaotic economic system with transient chaos, Chaos, Solitons & Fractals, 130 (2020), 109400. doi: 10.1016/j.chaos.2019.109400.

show all references

##### References:
 [1] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602-1611.  doi: 10.1016/j.camwa.2011.03.036. [2] A. Al-khedhairi, Differentiated Cournot duopoly game with fractional-order and its discretization, Engineering Computations, 36 (2019), 26. [3] A. Al-Khedhairi, Dynamics of a Cournot duopoly game with a generalized bounded rationality, Complexity, 2020 (2020), 8903183. [4] G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Math. Comput. Model., 52 (2010), 556-566.  doi: 10.1016/j.mcm.2010.03.055. [5] S. S. Askar and A. Al-Khedhairi, Analysis of a four-firm competition based on a generalized bounded rationality and different mechanisms, Complexity, 2019 (2019), 6352796. doi: 10.1155/2019/6352796. [6] F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I, 3 (2009), 1-12.  doi: 10.14232/ejqtde.2009.4.3. [7] H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17064255. [8] J. Cermak, I. Gyori and L. Nechvatal, On explicit stability conditions for a linear fractional difference system, Fractional Calculus and Applied Analysis, 18 (2015), 651-672. doi: 10.1515/fca-2015-0040. [9] G. A. Gottwald and I. Melbourne, On the implementation of the 0-1 test for chaos, SIAM J. Appl. Dyn. Syst., 8 (2009), 129-145.  doi: 10.1137/080718851. [10] N. Laskin, Fractional market dynamics, Physica A: Statist. Mech. Appl., 287 (2000), 482-492.  doi: 10.1016/S0378-4371(00)00387-3. [11] Y. Li, C. Sun, H. Ling, A. Lu and Y. Liu, Oligopolies price game in fractional order system, Chaos, Solitons & Fractals, 132 (2020), 109583. doi: 10.1016/j.chaos.2019.109583. [12] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA., 88 (1991), 2297–2301. doi: 10.1073/pnas.88.6.2297. [13] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA., 88 (1991), 2297-2301.  doi: 10.1073/pnas.88.6.2297. [14] F. Sapuppo, M. Bucolo, M. Intaglietta, L. Fortuna and P. Arena, A cellular nonlinear network: Real-time technology for the analysis of microfluidic phenomena in blood vessels, Nanotechnology, 17 (2006), S54. doi: 10.1088/0957-4484/17/4/009. [15] T. $\breve{S}$kovránek, I. Podlubny and I. Petrá$\breve{s}$, Modeling of the national economies in state-space: A fractional calculus approach, Economic Modelling, 29 (2012), 1322-1327. [16] H. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlin. Sci. Numer. Simul., 64 (2018), 213-231.  doi: 10.1016/j.cnsns.2018.04.019. [17] I. Tejado, D. Valério and N. Valério, Fractional calculus in economic growth modeling. The Portuguese case, in ICFDA'14 International Conference on Fractional Differentiation and Its Applications, IEEE, 2014, 1–6. [18] B. Xin, W. Peng and Y. Kwon, A fractional-order difference Cournot duopoly game with long memory, preprint, arXiv: 1903.04305. doi: 10.1016/j.physa.2020.124993. [19] B. Xin and Y. Li, 0-1 test for chaos in a fractional order financial system with investment incentive, Abstract and Applied Analysis, 2013 (2013), 876298. doi: 10.1155/2013/876298. [20] B. Xin, W. Peng and L. Guerrini, A continuous time Bertrand duopoly game with fractional delay and conformable derivative: Modelling, discretization process, Hopf bifurcation and chaos, Frontiers in Physics, 7 (2019), 84. [21] C. Xu, M. Liao, P. Li, Q. Xiao and S. Yuan, Control strategy for a fractional-order chaotic financial model, Complexity, 2019 (2019), 2989204. doi: 10.1155/2019/2989204. [22] A. Yousefpour, H. Jahanshahi, J. M. Munoz-Pacheco, S. Bekiros and Z. Wei, A fractional-order hyper-chaotic economic system with transient chaos, Chaos, Solitons & Fractals, 130 (2020), 109400. doi: 10.1016/j.chaos.2019.109400.
The phase portraits of game (8) with parameter values $\alpha = 2, \, \varepsilon_1 = 1.042811791, \, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$ for different fractional order values: (a) $\nu = 1, (b)\, \nu = 0.9, (c) \, \nu = 0.865, (d)\, \nu = 0.81$
(a) Bifurcation diagram versus $\nu$ when $\alpha = 2, \varepsilon _{1} = 1.042811791, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$.(b) The maximum Lyapunov exponents with respect to $\nu$ corresponding to (a)
(a) Bifurcation diagram versus $\varepsilon _1$ with order $\nu = 0.985$ when $\alpha = 2, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$. (b) Bifurcation diagram versus $\varepsilon _{1}$ with order $\nu = 0.972.$
(a) Bifurcation diagram versus $\nu$ when $\alpha = 2, \varepsilon _{1} = 1.44, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$. (b) The maximum Lyapunov exponents with respect to $\nu$ corresponding to (a)
Chaotic attractor of the proposed game with $\nu =0.98$ and for $\alpha =2,% \varepsilon _{1}=1.44,\varepsilon _{2}=1.1,\varepsilon _{3}=1.1,\zeta_{1}=0.4,\zeta_{2}=0.8,\zeta_{3}=0.1,\gamma _{1}=0.07, \gamma _{2}=0.03,\gamma _{3}=0.4$.
Periodic attractor of the proposed game with $\nu = 0.975$ and for $\alpha = 2, \varepsilon _{1} = 1.44,\varepsilon _{2} = 1.1,\varepsilon _{3} = 1.1,\zeta_{1} = 0.4,\zeta_{2} = 0.8,\zeta_{3} = 0.1,\gamma _{1} = 0.07, \gamma _{2} = 0.03,\gamma _{3} = 0.4$
Chaotic attractor of the proposed game with $\nu = 0.96$ and for $\alpha = 2, \varepsilon _{1} = 1.44, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$
(a) Bifurcation diagram versus $\varepsilon_1$ with order $\nu = 1$ when $\alpha = 1, \varepsilon _{2} = 0.9, \varepsilon _{3} = 0.9, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$ (b) Bifurcation diagram versus $\varepsilon _{1}$ with order $\nu = 0.7635.$
Periodic attractor of the proposed game with $\nu = 0.7635$ for $\varepsilon_1 = 2.6$ and $\alpha = 1, \varepsilon _{2} = 0.9,\varepsilon _{3} = 0.9,\zeta_{1} = 0.4,\zeta_{2} = 0.8,\zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$
Chaotic attractor of the proposed game with $\nu = 0.7635$ for $\varepsilon_1 = 2.9$ and $\alpha = 1, \varepsilon _{2} = 0.9,\varepsilon _{3} = 0.9,\zeta_{1} = 0.4,\zeta_{2} = 0.8,\zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$
0-1 test: regular dynamics of the translation components $(p, q)$ of the Cournot game (8) for $\alpha = 2$, $\varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$ with fractional order $\nu = 0.865$
0-1 test: regular dynamics of the translation components $(p, q)$ of the Cournot game (8) for $\alpha = 2, \varepsilon _{2} = 1.1, \varepsilon _{3} = 1.1, \zeta_{1} = 0.4, \zeta_{2} = 0.8, \zeta_{3} = 0.1, \gamma _{1} = 0.07, \gamma _{2} = 0.03, \gamma _{3} = 0.4$ with fractional order $\nu = 0.7635$
ApEn of the game model (8) vesrus $\nu$
 [1] Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012 [2] Xin-Guang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515). Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1493-1494. doi: 10.3934/dcds.2021161 [3] Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5905-5923. doi: 10.3934/dcdsb.2021069 [4] Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007 [5] Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014 [6] Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 [7] Ido Polak, Nicolas Privault. A stochastic newsvendor game with dynamic retail prices. Journal of Industrial and Management Optimization, 2018, 14 (2) : 731-742. doi: 10.3934/jimo.2017072 [8] Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013 [9] Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007 [10] S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660 [11] Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2155-2185. doi: 10.3934/cpaa.2021062 [12] Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030 [13] Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417 [14] Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210 [15] Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573 [16] Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259 [17] Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263 [18] Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics and Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65 [19] Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 [20] Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

2020 Impact Factor: 1.327