-
Previous Article
A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds
- DCDS-B Home
- This Issue
-
Next Article
The effect of caputo fractional difference operator on a novel game theory model
Time periodic solutions for a two-species chemotaxis-Navier-Stokes system
Department of Mathematics, Jilin University, Changchun 130012, China |
We consider a chemotaxis-Navier-Stokes system in two dimensional bounded domains. It is asserted that the chemotaxis system admits a time periodic solution under some conditions.
References:
[1] |
X. Cao,
Global classical solutions in chemotaxis-Navier-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.
doi: 10.1016/j.jde.2016.09.007. |
[2] |
X. Cao, S. Kurima and M. Mizukami,
Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.
doi: 10.1002/mma.4807. |
[3] |
C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24 pp.
doi: 10.1007/s00033-017-0882-9. |
[4] |
C. Jin,
Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.
doi: 10.1002/mana.201600180. |
[5] |
H. Jin and T. Xiang,
Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.
doi: 10.3934/dcdsb.2018249. |
[6] |
R. Farwig and T. Okabe,
Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281.
doi: 10.1007/s11565-010-0108-y. |
[7] |
J. Liu, Boundedness in a Chemotaxis-Navier-Stokes system modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp.
doi: 10.1007/s00021-019-0469-7. |
[8] |
W. Tao and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.
doi: 10.1016/j.nonrwa.2018.06.005. |
[9] |
W. Tao and Y. Li,
Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.
doi: 10.1016/j.jde.2019.11.078. |
[10] |
I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler and R. Goldstein,
Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[11] |
Y. Wang, M. Winkler and Z. Xiang,
Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 421-466.
doi: 10.2422/2036-2145.201603_004. |
[12] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[13] |
M. Winkler,
Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[14] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[15] |
Q. Zhang and Y. Li,
Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.
doi: 10.3934/dcdsb.2015.20.2751. |
[16] |
Q. Zhang and X. Zheng,
Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920. |
show all references
References:
[1] |
X. Cao,
Global classical solutions in chemotaxis-Navier-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.
doi: 10.1016/j.jde.2016.09.007. |
[2] |
X. Cao, S. Kurima and M. Mizukami,
Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.
doi: 10.1002/mma.4807. |
[3] |
C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24 pp.
doi: 10.1007/s00033-017-0882-9. |
[4] |
C. Jin,
Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.
doi: 10.1002/mana.201600180. |
[5] |
H. Jin and T. Xiang,
Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.
doi: 10.3934/dcdsb.2018249. |
[6] |
R. Farwig and T. Okabe,
Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281.
doi: 10.1007/s11565-010-0108-y. |
[7] |
J. Liu, Boundedness in a Chemotaxis-Navier-Stokes system modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp.
doi: 10.1007/s00021-019-0469-7. |
[8] |
W. Tao and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.
doi: 10.1016/j.nonrwa.2018.06.005. |
[9] |
W. Tao and Y. Li,
Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.
doi: 10.1016/j.jde.2019.11.078. |
[10] |
I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler and R. Goldstein,
Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[11] |
Y. Wang, M. Winkler and Z. Xiang,
Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 421-466.
doi: 10.2422/2036-2145.201603_004. |
[12] |
M. Winkler,
Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002. |
[13] |
M. Winkler,
Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[14] |
M. Winkler,
How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.
doi: 10.1090/tran/6733. |
[15] |
Q. Zhang and Y. Li,
Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.
doi: 10.3934/dcdsb.2015.20.2751. |
[16] |
Q. Zhang and X. Zheng,
Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920. |
[1] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[2] |
Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050 |
[3] |
Mimi Dai, Han Liu. Low modes regularity criterion for a chemotaxis-Navier-Stokes system. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2713-2735. doi: 10.3934/cpaa.2020118 |
[4] |
Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 |
[5] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022062 |
[6] |
Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751 |
[7] |
Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 329-349. doi: 10.3934/dcdss.2020019 |
[8] |
Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284 |
[9] |
Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 |
[10] |
Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 |
[11] |
Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249 |
[12] |
Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122 |
[13] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[14] |
Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861 |
[15] |
Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091 |
[16] |
Joelma Azevedo, Claudio Cuevas, Jarbas Dantas, Clessius Silva. On the fractional chemotaxis Navier-Stokes system in the critical spaces. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022088 |
[17] |
Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150 |
[18] |
Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235 |
[19] |
Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471 |
[20] |
Jiapeng Huang, Chunhua Jin. Time periodic solution to a coupled chemotaxis-fluid model with porous medium diffusion. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5415-5439. doi: 10.3934/dcds.2020233 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]