doi: 10.3934/dcdsb.2020303

Time periodic solutions for a two-species chemotaxis-Navier-Stokes system

Department of Mathematics, Jilin University, Changchun 130012, China

* Corresponding author: Changchun Liu

Received  June 2020 Revised  August 2020 Published  October 2020

We consider a chemotaxis-Navier-Stokes system in two dimensional bounded domains. It is asserted that the chemotaxis system admits a time periodic solution under some conditions.

Citation: Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020303
References:
[1]

X. Cao, Global classical solutions in chemotaxis-Navier-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.  doi: 10.1016/j.jde.2016.09.007.  Google Scholar

[2]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[3]

C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24 pp. doi: 10.1007/s00033-017-0882-9.  Google Scholar

[4]

C. Jin, Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.  doi: 10.1002/mana.201600180.  Google Scholar

[5]

H. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[6]

R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281.  doi: 10.1007/s11565-010-0108-y.  Google Scholar

[7]

J. Liu, Boundedness in a Chemotaxis-Navier-Stokes system modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[8]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[9]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[10]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[11]

Y. WangM. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 421-466.  doi: 10.2422/2036-2145.201603_004.  Google Scholar

[12]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[13]

M. Winkler, Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[14]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[15]

Q. Zhang and Y. Li, Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.  doi: 10.3934/dcdsb.2015.20.2751.  Google Scholar

[16]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.  doi: 10.1137/130936920.  Google Scholar

show all references

References:
[1]

X. Cao, Global classical solutions in chemotaxis-Navier-Stokes system with rotational flux term, J. Differential Equations, 261 (2016), 6883-6914.  doi: 10.1016/j.jde.2016.09.007.  Google Scholar

[2]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[3]

C. Jin, Large time periodic solutions to coupled chemotaxis-fluid models, Z. Angew. Math. Phys., 68 (2017), 24 pp. doi: 10.1007/s00033-017-0882-9.  Google Scholar

[4]

C. Jin, Large time periodic solution to the coupled chemotaxis-Stokes model, Math. Nachr., 290 (2017), 1701-1715.  doi: 10.1002/mana.201600180.  Google Scholar

[5]

H. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[6]

R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281.  doi: 10.1007/s11565-010-0108-y.  Google Scholar

[7]

J. Liu, Boundedness in a Chemotaxis-Navier-Stokes system modeling coral fertilization with slow p-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[8]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[9]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[10]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[11]

Y. WangM. Winkler and Z. Xiang, Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 421-466.  doi: 10.2422/2036-2145.201603_004.  Google Scholar

[12]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[13]

M. Winkler, Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[14]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[15]

Q. Zhang and Y. Li, Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2751-2759.  doi: 10.3934/dcdsb.2015.20.2751.  Google Scholar

[16]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.  doi: 10.1137/130936920.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[6]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[7]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[10]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[11]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[12]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[13]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[14]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[19]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[20]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (38)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]