doi: 10.3934/dcdsb.2020304

A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds

1. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Sharif University of Technology, Azadi Ave, Tehran, Iran

3. 

Weierstraß-Institut, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author: Sebastian Riedel

Received  March 2020 Published  October 2020

Building on results obtained in [21], we prove Local Stable and Unstable Manifold Theorems for nonlinear, singular stochastic delay differential equations. The main tools are rough paths theory and a semi-invertible Multiplicative Ergodic Theorem for cocycles acting on measurable fields of Banach spaces obtained in [20].

Citation: Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020304
References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

I. Bailleul, Regularity of the Itô-Lyons map, Confluentes Math., 7 (2015), 3-11.  doi: 10.5802/cml.15.  Google Scholar

[4]

P. Boxler, A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.  doi: 10.1007/BF01845701.  Google Scholar

[5]

T. CaraballoJ. DuanK. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.  doi: 10.1515/ans-2010-0102.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.  doi: 10.1098/rspa.2001.0819.  Google Scholar

[7]

A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics, 14 (1985), 273-317.  doi: 10.1080/17442508508833343.  Google Scholar

[8]

M. D. Chekroun, H. Liu and S. Wang, Approximation of Stochastic Invariant Manifolds. Stochastic Manifolds for Nonlinear SPDEs. Ⅰ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12496-4.  Google Scholar

[9]

M. D. Chekroun, H. Liu and S. Wang, Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations. Stochastic Manifolds for Nonlinear SPDEs. Ⅱ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12520-6.  Google Scholar

[10]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for stochastic evolution equations, J. Difference Equ. Appl., 21 (2015), 606-632.  doi: 10.1080/10236198.2015.1045889.  Google Scholar

[11]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for infinite dimensional random dynamical systems, Dyn. Syst., 34 (2019), 334-355.  doi: 10.1080/14689367.2018.1531972.  Google Scholar

[12]

L. Coutin and A. Lejay, Sensitivity of rough differential equations: An approach through the omega lemma, J. Differential Equations, 264 (2018), 3899-3917.  doi: 10.1016/j.jde.2017.11.031.  Google Scholar

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynam. Systems Appl., 16 (2007), 681-696.   Google Scholar

[14]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[15]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[16]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Insights, Elsevier, Amsterdam, 2014.  Google Scholar

[17]

P. K. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext, Springer, Berlin, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[18] P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511845079.  Google Scholar
[19]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[20]

M. G. Varzaneh and S. Riedel, Oseledets splitting and invariant manifolds on fields of Banach spaces, 2019, arXiv: 1912.07985. Google Scholar

[21]

M. G. Varzaneh, S. Riedel and M. Scheutzow, A dynamical theory for singular stochastic delay differential equations Ⅰ: Linear equations and a Multiplicative Ergodic Theorem on fields of Banach spaces, 2019, arXiv: 1903.01172v3. Google Scholar

[22]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[23]

E. Knobloch and K. A. Wiesenfeld, Bifurcations in fluctuating systems: The center-manifold approach, J. Statist. Phys., 33 (1983), 611-637.  doi: 10.1007/BF01018837.  Google Scholar

[24]

C. Kuehn and A. Neamţu, Rough center manifolds, 2018, arXiv: 1811.10037. Google Scholar

[25]

K. LuA. Neamţu and B. Schmalfuss, On the Oseledets-splitting for infinite-dimensional random dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1219-1242.  doi: 10.3934/dcdsb.2018149.  Google Scholar

[26]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[27]

S. E. A. Mohammed, Nonlinear flows of stochastic linear delay equations, Stochastics, 17 (1986), 207-213.  doi: 10.1080/17442508608833390.  Google Scholar

[28]

S. E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents and stationary solutions for affine stochastic delay equations, Stochastics Stochastics Rep., 29 (1990), 259-283.  doi: 10.1080/17442509008833617.  Google Scholar

[29]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Ⅰ. The multiplicative ergodic theory, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69-105.   Google Scholar

[30]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional-differential equations. Ⅱ. Examples and case studies, Ann. Probab., 25 (1997), 1210-1240.  doi: 10.1214/aop/1024404511.  Google Scholar

[31]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.  doi: 10.1214/aop/1022677380.  Google Scholar

[32]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅰ. Existence of the semiflow, J. Funct. Anal., 205 (2003), 271-305.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[33]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅱ. The local stable manifold theorem, J. Funct. Anal., 206 (2004), 253-306.  doi: 10.1016/j.jfa.2003.06.002.  Google Scholar

[34]

S. Mohammed and T. Zhang, Dynamics of stochastic 2D Navier-Stokes equations, J. Funct. Anal., 258 (2010), 3543-3591.  doi: 10.1016/j.jfa.2009.11.007.  Google Scholar

[35]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.  Google Scholar

[36]

A. Neamţu, Random invariant manifolds for ill-posed stochastic evolution equations, Stochastics and Dynamics, 20 (2020), 2050013, 31 pp. doi: 10.1142/S0219493720500136.  Google Scholar

[37]

A. NeuenkirchI. Nourdin and S. Tindel, Delay equations driven by rough paths, Electron. J. Probab., 13 (2008), 2031-2068.  doi: 10.1214/EJP.v13-575.  Google Scholar

[38]

S. Riedel and M. Scheutzow, Rough differential equations with unbounded drift term, J. Differential Equations, 262 (2017), 283-312.  doi: 10.1016/j.jde.2016.09.021.  Google Scholar

[39]

T. Wanner, Linearization of random dynamical systems, Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 4 (1995), 203-269.   Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

I. Bailleul, Regularity of the Itô-Lyons map, Confluentes Math., 7 (2015), 3-11.  doi: 10.5802/cml.15.  Google Scholar

[4]

P. Boxler, A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.  doi: 10.1007/BF01845701.  Google Scholar

[5]

T. CaraballoJ. DuanK. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.  doi: 10.1515/ans-2010-0102.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.  doi: 10.1098/rspa.2001.0819.  Google Scholar

[7]

A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics, 14 (1985), 273-317.  doi: 10.1080/17442508508833343.  Google Scholar

[8]

M. D. Chekroun, H. Liu and S. Wang, Approximation of Stochastic Invariant Manifolds. Stochastic Manifolds for Nonlinear SPDEs. Ⅰ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12496-4.  Google Scholar

[9]

M. D. Chekroun, H. Liu and S. Wang, Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations. Stochastic Manifolds for Nonlinear SPDEs. Ⅱ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12520-6.  Google Scholar

[10]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for stochastic evolution equations, J. Difference Equ. Appl., 21 (2015), 606-632.  doi: 10.1080/10236198.2015.1045889.  Google Scholar

[11]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for infinite dimensional random dynamical systems, Dyn. Syst., 34 (2019), 334-355.  doi: 10.1080/14689367.2018.1531972.  Google Scholar

[12]

L. Coutin and A. Lejay, Sensitivity of rough differential equations: An approach through the omega lemma, J. Differential Equations, 264 (2018), 3899-3917.  doi: 10.1016/j.jde.2017.11.031.  Google Scholar

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynam. Systems Appl., 16 (2007), 681-696.   Google Scholar

[14]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[15]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[16]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Insights, Elsevier, Amsterdam, 2014.  Google Scholar

[17]

P. K. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext, Springer, Berlin, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[18] P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511845079.  Google Scholar
[19]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[20]

M. G. Varzaneh and S. Riedel, Oseledets splitting and invariant manifolds on fields of Banach spaces, 2019, arXiv: 1912.07985. Google Scholar

[21]

M. G. Varzaneh, S. Riedel and M. Scheutzow, A dynamical theory for singular stochastic delay differential equations Ⅰ: Linear equations and a Multiplicative Ergodic Theorem on fields of Banach spaces, 2019, arXiv: 1903.01172v3. Google Scholar

[22]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[23]

E. Knobloch and K. A. Wiesenfeld, Bifurcations in fluctuating systems: The center-manifold approach, J. Statist. Phys., 33 (1983), 611-637.  doi: 10.1007/BF01018837.  Google Scholar

[24]

C. Kuehn and A. Neamţu, Rough center manifolds, 2018, arXiv: 1811.10037. Google Scholar

[25]

K. LuA. Neamţu and B. Schmalfuss, On the Oseledets-splitting for infinite-dimensional random dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1219-1242.  doi: 10.3934/dcdsb.2018149.  Google Scholar

[26]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[27]

S. E. A. Mohammed, Nonlinear flows of stochastic linear delay equations, Stochastics, 17 (1986), 207-213.  doi: 10.1080/17442508608833390.  Google Scholar

[28]

S. E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents and stationary solutions for affine stochastic delay equations, Stochastics Stochastics Rep., 29 (1990), 259-283.  doi: 10.1080/17442509008833617.  Google Scholar

[29]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Ⅰ. The multiplicative ergodic theory, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69-105.   Google Scholar

[30]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional-differential equations. Ⅱ. Examples and case studies, Ann. Probab., 25 (1997), 1210-1240.  doi: 10.1214/aop/1024404511.  Google Scholar

[31]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.  doi: 10.1214/aop/1022677380.  Google Scholar

[32]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅰ. Existence of the semiflow, J. Funct. Anal., 205 (2003), 271-305.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[33]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅱ. The local stable manifold theorem, J. Funct. Anal., 206 (2004), 253-306.  doi: 10.1016/j.jfa.2003.06.002.  Google Scholar

[34]

S. Mohammed and T. Zhang, Dynamics of stochastic 2D Navier-Stokes equations, J. Funct. Anal., 258 (2010), 3543-3591.  doi: 10.1016/j.jfa.2009.11.007.  Google Scholar

[35]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.  Google Scholar

[36]

A. Neamţu, Random invariant manifolds for ill-posed stochastic evolution equations, Stochastics and Dynamics, 20 (2020), 2050013, 31 pp. doi: 10.1142/S0219493720500136.  Google Scholar

[37]

A. NeuenkirchI. Nourdin and S. Tindel, Delay equations driven by rough paths, Electron. J. Probab., 13 (2008), 2031-2068.  doi: 10.1214/EJP.v13-575.  Google Scholar

[38]

S. Riedel and M. Scheutzow, Rough differential equations with unbounded drift term, J. Differential Equations, 262 (2017), 283-312.  doi: 10.1016/j.jde.2016.09.021.  Google Scholar

[39]

T. Wanner, Linearization of random dynamical systems, Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 4 (1995), 203-269.   Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[18]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.27

Article outline

[Back to Top]