-
Previous Article
Qualitative analysis of a generalized Nosé-Hoover oscillator
- DCDS-B Home
- This Issue
-
Next Article
Uniform stabilization of 1-D Schrödinger equation with internal difference-type control
Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China |
In this paper, we study the non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions in Hilbert spaces, where the operators in linear part (possibly unbounded) depend on time $ t $ and generate an evolution family. New existence result of mild solutions is established under more weaker conditions by introducing a new Green's function. The discussions are based on Schauder's fixed-point theorem as well as the theory of evolution family. At last, an example is also given to illustrate the feasibility of our theoretical results. The result obtained in this paper is a supplement to the existing literature and essentially extends some existing results in this area.
References:
[1] |
P. Acquistapace,
Evolution operators and strong solution of abstract parabolic equations, Differential Integral Equations, 1 (1988), 433-457.
|
[2] |
P. Acquistapace and B. Terreni,
A unified approach to abstract linear parabolic equations, Rend. Semin. Mat. Univ. Padova, 78 (1987), 47-107.
|
[3] |
H. Amann,
Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
doi: 10.1016/0022-0396(88)90156-8. |
[4] |
J. Bao, Z. Hou and C. Yuan,
Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soci., 138 (2010), 2169-2180.
doi: 10.1090/S0002-9939-10-10230-5. |
[5] |
L. Byszewski,
Application of preperties of the right hand sides of evolution equations to an investigation of nonlocal evolution problems, Nonlinear Anal., 33 (1998), 413-426.
doi: 10.1016/S0362-546X(97)00594-4. |
[6] |
P. Chen and Y. Li,
Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.
doi: 10.1007/s00025-012-0230-5. |
[7] |
P. Chen and Y. Li,
Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.
doi: 10.1007/s00033-013-0351-z. |
[8] |
P. Chen, X. Zhang and Y. Li, Approximation technique for fractional evolution equations with nonlocal integral conditions, Mediterr. J. Math., 14 (2017), Art. 226.
doi: 10.1007/s00009-017-1029-0. |
[9] |
P. Chen, Y. Li and X. Zhang,
On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817-1840.
doi: 10.3934/cpaa.2015.14.1817. |
[10] |
P. Chen and Y. Li,
Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63-76.
doi: 10.1007/s13348-014-0106-y. |
[11] |
P. Chen, X. Zhang and Y. Li,
Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calcu. Appl. Anal., 19 (2016), 1507-1526.
doi: 10.1515/fca-2016-0078. |
[12] |
P. Chen, A. Abdelmonem and Y. Li,
Global existence and asymptotic stability of mild solutions for stochastic evolution equations with nonlocal initial conditions, J. Integral Equations Appl., 29 (2017), 325-348.
doi: 10.1216/JIE-2017-29-2-325. |
[13] |
P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017), 794-803.
doi: 10.1016/j.camwa.2017.01.009. |
[14] |
P. Chen, X. Zhang and Y. Li,
A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975-1992.
doi: 10.3934/cpaa.2018094. |
[15] |
P. Chen, X. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst., 26 (2020), 1-16.
doi: 10.1007/s10883-018-9423-x. |
[16] |
P. Chen, X. Zhang and Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955-973.
doi: 10.1007/s11868-018-0257-9. |
[17] |
P. Chen, X. Zhang and Y. Li,
Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020), 559-584.
doi: 10.1007/s43037-019-00008-2. |
[18] |
P. Chen, X. Zhang and Y. Li,
Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23 (2020), 268-291.
doi: 10.1515/fca-2020-0011. |
[19] |
P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B.
doi: 10.3934/dcdsb.2020171. |
[20] |
J. Cui, L. Yan and X. Wu,
Nonlocal Cauchy problem for some stochastic integro-differential equations in Hilbert spaces, J. Korean Stat. Soci., 41 (2012), 279-290.
doi: 10.1016/j.jkss.2011.10.001. |
[21] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[22] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[23] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[24] |
M. M. EI-Borai, O. L. Mostafa and H. M. Ahmed,
Asymptotic stability of some stochastic evolution equations, Appl. Math. Comput., 144 (2003), 273-286.
doi: 10.1016/S0096-3003(02)00406-X. |
[25] |
K. Ezzinbi, X. Fu and K. Hilal,
Existence and regularity in the $\alpha$-norm for some neutral partial differential equations with nonlocal conditions, Nonlinear Anal., 67 (2007), 1613-1622.
doi: 10.1016/j.na.2006.08.003. |
[26] |
Z. Fan and G. Li,
Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.
doi: 10.1016/j.jfa.2009.10.023. |
[27] |
S. Farahi and T. Guendouzi,
Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions, Results. Math., 65 (2014), 501-521.
doi: 10.1007/s00025-013-0362-2. |
[28] |
W. E. Fitzgibbon,
Semilinear functional equations in Banach space, J. Differential Equations, 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2. |
[29] |
X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations, 2012 (2012), No. 110, 15 pp. |
[30] |
X. Fu,
Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theory, 6 (2017), 517-534.
doi: 10.3934/eect.2017026. |
[31] |
W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995. |
[32] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. |
[33] |
J. Liang, J. Liu and T.-J. Xiao,
Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal., 57 (2004), 183-189.
doi: 10.1016/j.na.2004.02.007. |
[34] |
J. Liang, J. H. Liu and T.-J. Xiao,
Nonlocal Cauchy problems for nonautonomous evolution equations, Commun. Pure Appl. Anal., 5 (2006), 529-535.
doi: 10.3934/cpaa.2006.5.529. |
[35] |
K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall/CRC, Boca Raton, FL, 2006. |
[36] |
J. Luo,
Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760.
doi: 10.1016/j.jmaa.2007.11.019. |
[37] |
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Ltd., Chichester, 1997. |
[38] |
M. McKibben, Discoving Evolution Equations with Applications, Vol. I Deterministic Models, Chapman and Hall/CRC Appl. Math. Nonlinear Sci. Ser., 2011. Google Scholar |
[39] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[40] |
Y. Ren, Q. Zhou and L. Chen,
Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331.
doi: 10.1007/s10957-010-9792-0. |
[41] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[42] |
K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, Dordrecht, 1991.
doi: 10.1007/978-94-011-3712-6. |
[43] |
H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, USA, 1997. |
[44] |
T. Taniguchi, K. Liu and A. Truman,
Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.
doi: 10.1006/jdeq.2001.4073. |
[45] |
I. I. Vrabie, Delay evolution equations with mixed nonlocal plus local initial conditions, Commun. Contemp. Math., 17 (2015), 1350035.
doi: 10.1142/S0219199713500351. |
[46] |
R.-N. Wang, K. Ezzinbi and P.-X. Zhu,
Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.
doi: 10.1216/JIE-2014-26-2-275. |
[47] |
R. N. Wang and P. X. Zhu,
Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions, Nonlinear Anal., 85 (2013), 180-191.
doi: 10.1016/j.na.2013.02.026. |
[48] |
X. Zhang, P. Chen, A. Abdelmonem and Y. Li,
Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90 (2018), 1005-1022.
doi: 10.1080/17442508.2018.1466885. |
[49] |
X. Zhang, P. Chen, A. Abdelmonem and Y. Li,
Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69 (2019), 111-124.
doi: 10.1515/ms-2017-0207. |
[50] |
B. Zhu, L. Liu and Y. Wu,
Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73-79.
doi: 10.1016/j.aml.2016.05.010. |
show all references
References:
[1] |
P. Acquistapace,
Evolution operators and strong solution of abstract parabolic equations, Differential Integral Equations, 1 (1988), 433-457.
|
[2] |
P. Acquistapace and B. Terreni,
A unified approach to abstract linear parabolic equations, Rend. Semin. Mat. Univ. Padova, 78 (1987), 47-107.
|
[3] |
H. Amann,
Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
doi: 10.1016/0022-0396(88)90156-8. |
[4] |
J. Bao, Z. Hou and C. Yuan,
Stability in distribution of mild solutions to stochastic partial differential equations, Proc. Amer. Math. Soci., 138 (2010), 2169-2180.
doi: 10.1090/S0002-9939-10-10230-5. |
[5] |
L. Byszewski,
Application of preperties of the right hand sides of evolution equations to an investigation of nonlocal evolution problems, Nonlinear Anal., 33 (1998), 413-426.
doi: 10.1016/S0362-546X(97)00594-4. |
[6] |
P. Chen and Y. Li,
Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744.
doi: 10.1007/s00025-012-0230-5. |
[7] |
P. Chen and Y. Li,
Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.
doi: 10.1007/s00033-013-0351-z. |
[8] |
P. Chen, X. Zhang and Y. Li, Approximation technique for fractional evolution equations with nonlocal integral conditions, Mediterr. J. Math., 14 (2017), Art. 226.
doi: 10.1007/s00009-017-1029-0. |
[9] |
P. Chen, Y. Li and X. Zhang,
On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817-1840.
doi: 10.3934/cpaa.2015.14.1817. |
[10] |
P. Chen and Y. Li,
Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63-76.
doi: 10.1007/s13348-014-0106-y. |
[11] |
P. Chen, X. Zhang and Y. Li,
Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calcu. Appl. Anal., 19 (2016), 1507-1526.
doi: 10.1515/fca-2016-0078. |
[12] |
P. Chen, A. Abdelmonem and Y. Li,
Global existence and asymptotic stability of mild solutions for stochastic evolution equations with nonlocal initial conditions, J. Integral Equations Appl., 29 (2017), 325-348.
doi: 10.1216/JIE-2017-29-2-325. |
[13] |
P. Chen, X. Zhang, Y. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017), 794-803.
doi: 10.1016/j.camwa.2017.01.009. |
[14] |
P. Chen, X. Zhang and Y. Li,
A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018), 1975-1992.
doi: 10.3934/cpaa.2018094. |
[15] |
P. Chen, X. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst., 26 (2020), 1-16.
doi: 10.1007/s10883-018-9423-x. |
[16] |
P. Chen, X. Zhang and Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper. Appl., 10 (2019), 955-973.
doi: 10.1007/s11868-018-0257-9. |
[17] |
P. Chen, X. Zhang and Y. Li,
Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020), 559-584.
doi: 10.1007/s43037-019-00008-2. |
[18] |
P. Chen, X. Zhang and Y. Li,
Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23 (2020), 268-291.
doi: 10.1515/fca-2020-0011. |
[19] |
P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B.
doi: 10.3934/dcdsb.2020171. |
[20] |
J. Cui, L. Yan and X. Wu,
Nonlocal Cauchy problem for some stochastic integro-differential equations in Hilbert spaces, J. Korean Stat. Soci., 41 (2012), 279-290.
doi: 10.1016/j.jkss.2011.10.001. |
[21] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[22] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[23] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[24] |
M. M. EI-Borai, O. L. Mostafa and H. M. Ahmed,
Asymptotic stability of some stochastic evolution equations, Appl. Math. Comput., 144 (2003), 273-286.
doi: 10.1016/S0096-3003(02)00406-X. |
[25] |
K. Ezzinbi, X. Fu and K. Hilal,
Existence and regularity in the $\alpha$-norm for some neutral partial differential equations with nonlocal conditions, Nonlinear Anal., 67 (2007), 1613-1622.
doi: 10.1016/j.na.2006.08.003. |
[26] |
Z. Fan and G. Li,
Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.
doi: 10.1016/j.jfa.2009.10.023. |
[27] |
S. Farahi and T. Guendouzi,
Approximate controllability of fractional neutral stochastic evolution equations with nonlocal conditions, Results. Math., 65 (2014), 501-521.
doi: 10.1007/s00025-013-0362-2. |
[28] |
W. E. Fitzgibbon,
Semilinear functional equations in Banach space, J. Differential Equations, 29 (1978), 1-14.
doi: 10.1016/0022-0396(78)90037-2. |
[29] |
X. Fu, Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions, Electron. J. Differential Equations, 2012 (2012), No. 110, 15 pp. |
[30] |
X. Fu,
Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay, Evol. Equ. Control Theory, 6 (2017), 517-534.
doi: 10.3934/eect.2017026. |
[31] |
W. Grecksch and C. Tudor, Stochastic Evolution Equations: A Hilbert Space Approach, Akademic Verlag, Berlin, 1995. |
[32] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. |
[33] |
J. Liang, J. Liu and T.-J. Xiao,
Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal., 57 (2004), 183-189.
doi: 10.1016/j.na.2004.02.007. |
[34] |
J. Liang, J. H. Liu and T.-J. Xiao,
Nonlocal Cauchy problems for nonautonomous evolution equations, Commun. Pure Appl. Anal., 5 (2006), 529-535.
doi: 10.3934/cpaa.2006.5.529. |
[35] |
K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman and Hall/CRC, Boca Raton, FL, 2006. |
[36] |
J. Luo,
Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760.
doi: 10.1016/j.jmaa.2007.11.019. |
[37] |
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Ltd., Chichester, 1997. |
[38] |
M. McKibben, Discoving Evolution Equations with Applications, Vol. I Deterministic Models, Chapman and Hall/CRC Appl. Math. Nonlinear Sci. Ser., 2011. Google Scholar |
[39] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[40] |
Y. Ren, Q. Zhou and L. Chen,
Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with poisson jumps and infinite delay, J. Optim. Theory Appl., 149 (2011), 315-331.
doi: 10.1007/s10957-010-9792-0. |
[41] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[42] |
K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic Publishers, Dordrecht, 1991.
doi: 10.1007/978-94-011-3712-6. |
[43] |
H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, New York, USA, 1997. |
[44] |
T. Taniguchi, K. Liu and A. Truman,
Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.
doi: 10.1006/jdeq.2001.4073. |
[45] |
I. I. Vrabie, Delay evolution equations with mixed nonlocal plus local initial conditions, Commun. Contemp. Math., 17 (2015), 1350035.
doi: 10.1142/S0219199713500351. |
[46] |
R.-N. Wang, K. Ezzinbi and P.-X. Zhu,
Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions, J. Integral Equations Appl., 26 (2014), 275-299.
doi: 10.1216/JIE-2014-26-2-275. |
[47] |
R. N. Wang and P. X. Zhu,
Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions, Nonlinear Anal., 85 (2013), 180-191.
doi: 10.1016/j.na.2013.02.026. |
[48] |
X. Zhang, P. Chen, A. Abdelmonem and Y. Li,
Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90 (2018), 1005-1022.
doi: 10.1080/17442508.2018.1466885. |
[49] |
X. Zhang, P. Chen, A. Abdelmonem and Y. Li,
Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69 (2019), 111-124.
doi: 10.1515/ms-2017-0207. |
[50] |
B. Zhu, L. Liu and Y. Wu,
Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Appl. Math. Lett., 61 (2016), 73-79.
doi: 10.1016/j.aml.2016.05.010. |
[1] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[4] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[5] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[6] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[7] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[8] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[9] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[10] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[11] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[12] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[13] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[14] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[15] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[16] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[17] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[18] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[19] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[20] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]