• Previous Article
    Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry
  • DCDS-B Home
  • This Issue
  • Next Article
    Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials
doi: 10.3934/dcdsb.2020309

Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

* Corresponding author

Received  June 2020 Revised  September 2020 Published  October 2020

Fund Project: This work was supported by the National Natural Science Foundation of China under grant 41875084

In this paper, we investigate a stochastic fractionally dissipative quasi-geostrophic equation driven by a multiplicative white noise, whose external forces contain hereditary characteristics. The existence and uniqueness of both local martingale and local pathwise solutions are established in $ H^s $ with $ s\geq2-2\alpha $, where $ \alpha\in(\frac{1}{2}, 1) $. For the critical case $ \alpha = \frac12 $, we obtain the similar results in $ H^s $ with $ s>1 $.

Citation: Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020309
References:
[1]

Z. Brzeźniak and E. Motyl, Fractionally dissipative stochastic quasi-geostrophic type equations on $\mathbb{R}^d$, SIAM J. Math. Anal., 51 (2019), 2306-2358.  doi: 10.1137/17M1111589.  Google Scholar

[2]

Z. Brzézniak and S. Peszat, Strong local and global solutions for stochastic Navier-Stokes equations, infinite dimensional stochastic analysis, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52 (2000), 85-98.   Google Scholar

[3]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[4]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 152, Cambridge University Press, 2014. doi: 10.1017/CBO9780511666223.  Google Scholar

[6]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[7]

T. DlotkoT. Liang and Y. Wang, Critical and super-critical abstract parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1517-1541.  doi: 10.3934/dcdsb.2019238.  Google Scholar

[8]

R. Farwig and C. Qian, Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in $\mathbb{R}^2$, J. Differential Equations, 266 (2019), 6525-6579.  doi: 10.1016/j.jde.2018.11.009.  Google Scholar

[9]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[10]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[11]

N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14 (2009), 567-600.   Google Scholar

[12]

N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642.  doi: 10.1007/s00208-005-0715-6.  Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[14]

N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181.  doi: 10.1007/s00220-004-1256-7.  Google Scholar

[15]

T. G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electr. J. Probab., 12 (2007), 951-965.  doi: 10.1214/EJP.v12-431.  Google Scholar

[16]

L. Liu and T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations, 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.  Google Scholar

[17]

H. LuS. LüJ. Xin and D. Huang, A random attractor for the stochastic quasi-geostrophic dynamical system on unbounded domains, Nonlinear Anal., 90 (2013), 96-112.  doi: 10.1016/j.na.2013.05.020.  Google Scholar

[18]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.  doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[19]

T. T. Medjo, Attractors for the multilayer quasi-geostrophic equations of the ocean with delays, Appl. Anal., 87 (2008), 325-347.  doi: 10.1080/00036810701858177.  Google Scholar

[20]

R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310.  doi: 10.1137/S0036141002409167.  Google Scholar

[21]

C. J. Niche and G. Planas, Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays, Nonlinear Anal., 75 (2012), 3936-3950.  doi: 10.1016/j.na.2012.02.017.  Google Scholar

[22]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167.  doi: 10.1080/17442507908833142.  Google Scholar

[23]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4650-3.  Google Scholar

[24]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. doi: 10.1007/978-3-540-70781-3.  Google Scholar

[25]

M. RöcknerB. Schmuland and X. Zhang, Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Condensed Matter Phys., 2 (2008), 247-259.   Google Scholar

[26]

M. RöcknerR. Zhu and X. Zhu, Sub and supercritical stochastic quasi-geostrophic equation, Ann. Probab., 43 (2015), 1202-1273.  doi: 10.1214/13-AOP887.  Google Scholar

[27]

M. RöcknerR. Zhu and X. Zhu, Stochastic quasi-geostrophic equation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15 (2012), 1-6.  doi: 10.1142/S0219025712500014.  Google Scholar

[28] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.   Google Scholar
[29]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Levy processes, J. Math. Anal. Appl., 385 (2012), 634-654.  doi: 10.1016/j.jmaa.2011.06.076.  Google Scholar

[30]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.  Google Scholar

[31]

L. Wan and J. Duan, Exponential stability of the multi-layer quasi-geostrophic ocean model with delays, Nonlinear Anal., 71 (2009), 799-811.  doi: 10.1016/j.na.2008.10.107.  Google Scholar

[32]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations, 56 (2001), 1-13.   Google Scholar

[33]

R. Zhu and X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dynam. Differential Equations, 29 (2017), 289-322.  doi: 10.1007/s10884-016-9537-3.  Google Scholar

show all references

References:
[1]

Z. Brzeźniak and E. Motyl, Fractionally dissipative stochastic quasi-geostrophic type equations on $\mathbb{R}^d$, SIAM J. Math. Anal., 51 (2019), 2306-2358.  doi: 10.1137/17M1111589.  Google Scholar

[2]

Z. Brzézniak and S. Peszat, Strong local and global solutions for stochastic Navier-Stokes equations, infinite dimensional stochastic analysis, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52 (2000), 85-98.   Google Scholar

[3]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[4]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 152, Cambridge University Press, 2014. doi: 10.1017/CBO9780511666223.  Google Scholar

[6]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[7]

T. DlotkoT. Liang and Y. Wang, Critical and super-critical abstract parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1517-1541.  doi: 10.3934/dcdsb.2019238.  Google Scholar

[8]

R. Farwig and C. Qian, Asymptotic behavior for the quasi-geostrophic equations with fractional dissipation in $\mathbb{R}^2$, J. Differential Equations, 266 (2019), 6525-6579.  doi: 10.1016/j.jde.2018.11.009.  Google Scholar

[9]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[10]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822.  doi: 10.3934/dcdsb.2008.10.801.  Google Scholar

[11]

N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14 (2009), 567-600.   Google Scholar

[12]

N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642.  doi: 10.1007/s00208-005-0715-6.  Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[14]

N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181.  doi: 10.1007/s00220-004-1256-7.  Google Scholar

[15]

T. G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electr. J. Probab., 12 (2007), 951-965.  doi: 10.1214/EJP.v12-431.  Google Scholar

[16]

L. Liu and T. Caraballo, Analysis of a stochastic 2D-Navier-Stokes model with infinite delay, J. Dynam. Differential Equations, 31 (2019), 2249-2274.  doi: 10.1007/s10884-018-9703-x.  Google Scholar

[17]

H. LuS. LüJ. Xin and D. Huang, A random attractor for the stochastic quasi-geostrophic dynamical system on unbounded domains, Nonlinear Anal., 90 (2013), 96-112.  doi: 10.1016/j.na.2013.05.020.  Google Scholar

[18]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673.  doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[19]

T. T. Medjo, Attractors for the multilayer quasi-geostrophic equations of the ocean with delays, Appl. Anal., 87 (2008), 325-347.  doi: 10.1080/00036810701858177.  Google Scholar

[20]

R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310.  doi: 10.1137/S0036141002409167.  Google Scholar

[21]

C. J. Niche and G. Planas, Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays, Nonlinear Anal., 75 (2012), 3936-3950.  doi: 10.1016/j.na.2012.02.017.  Google Scholar

[22]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167.  doi: 10.1080/17442507908833142.  Google Scholar

[23]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4650-3.  Google Scholar

[24]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, in: Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. doi: 10.1007/978-3-540-70781-3.  Google Scholar

[25]

M. RöcknerB. Schmuland and X. Zhang, Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Condensed Matter Phys., 2 (2008), 247-259.   Google Scholar

[26]

M. RöcknerR. Zhu and X. Zhu, Sub and supercritical stochastic quasi-geostrophic equation, Ann. Probab., 43 (2015), 1202-1273.  doi: 10.1214/13-AOP887.  Google Scholar

[27]

M. RöcknerR. Zhu and X. Zhu, Stochastic quasi-geostrophic equation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15 (2012), 1-6.  doi: 10.1142/S0219025712500014.  Google Scholar

[28] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.   Google Scholar
[29]

T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Levy processes, J. Math. Anal. Appl., 385 (2012), 634-654.  doi: 10.1016/j.jmaa.2011.06.076.  Google Scholar

[30]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.  Google Scholar

[31]

L. Wan and J. Duan, Exponential stability of the multi-layer quasi-geostrophic ocean model with delays, Nonlinear Anal., 71 (2009), 799-811.  doi: 10.1016/j.na.2008.10.107.  Google Scholar

[32]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations, 56 (2001), 1-13.   Google Scholar

[33]

R. Zhu and X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dynam. Differential Equations, 29 (2017), 289-322.  doi: 10.1007/s10884-016-9537-3.  Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[3]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[4]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[7]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[8]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[11]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[12]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[13]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[14]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[15]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[18]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[19]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[20]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

2019 Impact Factor: 1.27

Article outline

[Back to Top]