September  2021, 26(9): 4727-4743. doi: 10.3934/dcdsb.2020310

Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications

1. 

School of Mathematical Sciences, Ocean University of China, Qingdao, Shandong 266100, China

2. 

Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK

3. 

Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266100, China

* Corresponding authors: Linshan Wang and Yangfan Wang

Received  January 2019 Revised  June 2020 Published  September 2021 Early access  October 2020

Fund Project: The authors are supported by the China Scholarship Council under Grant 201906330009, the Fundamental Research Funds for the Central Universities under Grant 201861005, the National Key Research and Development Program of China under Grant 2018YFD0901601, the National Natural Science Foundation of China under Grant 11771014 and Grant 31772844, and the Major Basic Research Projects of Shandong Natural Science Foundation under Grant 2018A07

In this paper, we focus on the mild periodic solutions to a class of delayed stochastic reaction-diffusion differential equations. First, the key issues of Markov property in Banach space $ C $, $ p $-uniformly boundedness, and $ p $-point dissipativity of mild solutions $ \boldsymbol{u}_t $ to the equations are discussed. Then, the theorems of existence-uniqueness and exponential stability in the mean-square sense of the mild periodic solutions are established by using the dissipative theory and the operator semigroup technique, and the relevant results about the existence of mild periodic solutions in the quoted literature are generalized. Next, the given theoretical results are successfully applied to the delayed stochastic reaction-diffusion Hopfield neural networks, and some easy-to-test criteria of exponential stability for the mild periodic solution to the networks are obtained. Finally, some examples are presented to demonstrate the feasibility of our results.

Citation: Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310
References:
[1]

G. Adomian and R. Rach, Nonlinear stochastic differential delay equations, J. Math. Anal. Appl., 91 (1983), 94-101.  doi: 10.1016/0022-247X(83)90094-X.  Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, 1974.  Google Scholar

[3]

H. Bao and J. Cao, Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Networks, 24 (2011), 19-28.   Google Scholar

[4]

E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125 (2000), 297-307.  doi: 10.1016/S0377-0427(00)00475-1.  Google Scholar

[5]

J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136-147.  doi: 10.1016/S0375-9601(02)01720-6.  Google Scholar

[6]

T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763.  doi: 10.1080/07362999908809633.  Google Scholar

[7]

W. H. ChenL. Liu and X. Lu, Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique, Nonlinear Dynam., 87 (2017), 535-551.  doi: 10.1007/s11071-016-3059-8.  Google Scholar

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[9]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[10] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975.   Google Scholar
[11]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74. Kluwer Academic Publishers Group, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[12]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[13]

K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.  doi: 10.1215/kjm/1250524705.  Google Scholar

[14]

R. Jahanipur, Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions, J. Differential Equations, 248 (2010), 1230-1255.  doi: 10.1016/j.jde.2009.12.012.  Google Scholar

[15]

J. Lei and M. C. Mackey, Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system, SIAM J. Appl. Math., 67 (2006/07), 387-407.  doi: 10.1137/060650234.  Google Scholar

[16]

X. Li, Existence and global exponential stability of periodic solution for impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292-307.  doi: 10.1016/j.amc.2009.05.005.  Google Scholar

[17]

X. LiangL. WangY. Wang and R. Wang, Dynamical behavior of delayed reaction-diffusion Hopfield neural networks driven by infinite dimensional Wiener processes, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 1816-1826.  doi: 10.1109/TNNLS.2015.2460117.  Google Scholar

[18]

K. Liu, Some views on recent randomized study of infinite dimensional functional differential equations (in Chinese), Sci. Sin. Math., 45 (2015), 559-566.   Google Scholar

[19]

Z. Liu and L. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 290 (2004), 247-262.  doi: 10.1016/j.jmaa.2003.09.052.  Google Scholar

[20]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[21]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[22]

S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, Providence, 1991. doi: 10.1090/mmono/090.  Google Scholar

[23] L. Wang, Delayed Recurrent Neural Networks, Science Press, Beijing, 2008.   Google Scholar
[24]

L. Wang, Global well-posedness and stability of the mild solutions for a class of stochastic partial functional differential equations (in Chinese), Sci. Sin. Math., 47 (2017), 371-382.   Google Scholar

[25]

L. Wang and Y. Gao, Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. Lett. A, 350 (2006), 342-348.  doi: 10.1016/j.physleta.2005.10.031.  Google Scholar

[26]

Z. WangY. LiuM. Li and X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 17 (2006), 814-820.   Google Scholar

[27]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[28]

L. Wang and D. Xu, Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466-474.   Google Scholar

[29]

T. WeiL. Wang and Y. Wang, Existence, uniqueness and stability of mild solutions to stochastic reaction-diffusion Cohen-Grossberg neural networks with delays and Wiener processes, Neurocomputing, 239 (2017), 19-27.  doi: 10.1016/j.neucom.2017.01.069.  Google Scholar

[30]

D. XuY. Huang and Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023.  doi: 10.3934/dcds.2009.24.1005.  Google Scholar

[31]

Q. YaoL. Wang and Y. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470-477.   Google Scholar

[32]

B. Zhang and K. Gopalsamy, On the periodic solution of $n$-dimensional stochastic population models, Stoch. Anal. Appl., 18 (2000), 323-331.  doi: 10.1080/07362990008809671.  Google Scholar

[33]

Q. Zhu and B. Song, Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Anal. Real World Appl., 12 (2011), 2851-2860.  doi: 10.1016/j.nonrwa.2011.04.011.  Google Scholar

show all references

References:
[1]

G. Adomian and R. Rach, Nonlinear stochastic differential delay equations, J. Math. Anal. Appl., 91 (1983), 94-101.  doi: 10.1016/0022-247X(83)90094-X.  Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, 1974.  Google Scholar

[3]

H. Bao and J. Cao, Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Networks, 24 (2011), 19-28.   Google Scholar

[4]

E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125 (2000), 297-307.  doi: 10.1016/S0377-0427(00)00475-1.  Google Scholar

[5]

J. Cao, New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136-147.  doi: 10.1016/S0375-9601(02)01720-6.  Google Scholar

[6]

T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763.  doi: 10.1080/07362999908809633.  Google Scholar

[7]

W. H. ChenL. Liu and X. Lu, Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique, Nonlinear Dynam., 87 (2017), 535-551.  doi: 10.1007/s11071-016-3059-8.  Google Scholar

[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[9]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[10] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975.   Google Scholar
[11]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74. Kluwer Academic Publishers Group, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[12]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[13]

K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.  doi: 10.1215/kjm/1250524705.  Google Scholar

[14]

R. Jahanipur, Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions, J. Differential Equations, 248 (2010), 1230-1255.  doi: 10.1016/j.jde.2009.12.012.  Google Scholar

[15]

J. Lei and M. C. Mackey, Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system, SIAM J. Appl. Math., 67 (2006/07), 387-407.  doi: 10.1137/060650234.  Google Scholar

[16]

X. Li, Existence and global exponential stability of periodic solution for impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292-307.  doi: 10.1016/j.amc.2009.05.005.  Google Scholar

[17]

X. LiangL. WangY. Wang and R. Wang, Dynamical behavior of delayed reaction-diffusion Hopfield neural networks driven by infinite dimensional Wiener processes, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 1816-1826.  doi: 10.1109/TNNLS.2015.2460117.  Google Scholar

[18]

K. Liu, Some views on recent randomized study of infinite dimensional functional differential equations (in Chinese), Sci. Sin. Math., 45 (2015), 559-566.   Google Scholar

[19]

Z. Liu and L. Liao, Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 290 (2004), 247-262.  doi: 10.1016/j.jmaa.2003.09.052.  Google Scholar

[20]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[21]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[22]

S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, Providence, 1991. doi: 10.1090/mmono/090.  Google Scholar

[23] L. Wang, Delayed Recurrent Neural Networks, Science Press, Beijing, 2008.   Google Scholar
[24]

L. Wang, Global well-posedness and stability of the mild solutions for a class of stochastic partial functional differential equations (in Chinese), Sci. Sin. Math., 47 (2017), 371-382.   Google Scholar

[25]

L. Wang and Y. Gao, Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. Lett. A, 350 (2006), 342-348.  doi: 10.1016/j.physleta.2005.10.031.  Google Scholar

[26]

Z. WangY. LiuM. Li and X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 17 (2006), 814-820.   Google Scholar

[27]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[28]

L. Wang and D. Xu, Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466-474.   Google Scholar

[29]

T. WeiL. Wang and Y. Wang, Existence, uniqueness and stability of mild solutions to stochastic reaction-diffusion Cohen-Grossberg neural networks with delays and Wiener processes, Neurocomputing, 239 (2017), 19-27.  doi: 10.1016/j.neucom.2017.01.069.  Google Scholar

[30]

D. XuY. Huang and Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023.  doi: 10.3934/dcds.2009.24.1005.  Google Scholar

[31]

Q. YaoL. Wang and Y. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470-477.   Google Scholar

[32]

B. Zhang and K. Gopalsamy, On the periodic solution of $n$-dimensional stochastic population models, Stoch. Anal. Appl., 18 (2000), 323-331.  doi: 10.1080/07362990008809671.  Google Scholar

[33]

Q. Zhu and B. Song, Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Anal. Real World Appl., 12 (2011), 2851-2860.  doi: 10.1016/j.nonrwa.2011.04.011.  Google Scholar

Figure 1.  The periodic trajectory and simulation of $ u_1 $ and $ u_2 $ in Example 1
Figure 2.  The phase graph in Example 1
Figure 3.  The periodic trajectory and simulation of $ u_1 $ and $ u_2 $ in Example 1
Figure 4.  The trajectory of u to Example 3.1 (left) and Example 3.2 (right) in Example 3
[1]

Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1429-1446. doi: 10.3934/dcdss.2020370

[2]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[3]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[4]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[5]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[6]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020100

[7]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[8]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[9]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[10]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[11]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[12]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020087

[13]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[14]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[15]

Tarik Mohammed Touaoula, Mohammed Nor Frioui, Nikolay Bessonov, Vitaly Volpert. Dynamics of solutions of a reaction-diffusion equation with delayed inhibition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2425-2442. doi: 10.3934/dcdss.2020193

[16]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[17]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[18]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[19]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[20]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1465-1477. doi: 10.3934/dcdss.2020395

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (208)
  • HTML views (301)
  • Cited by (0)

Other articles
by authors

[Back to Top]