[1]
|
T. J. Bridges, Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147-190.
doi: 10.1017/S0305004196001429.
|
[2]
|
T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320.
doi: 10.1088/0305-4470/39/19/S02.
|
[3]
|
L. Brugnano, F. Iavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 17-37.
|
[4]
|
L. Brugnano and Y. Sun, Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems, Numer. Algorithms, 65 (2014), 611-632.
doi: 10.1007/s11075-013-9769-9.
|
[5]
|
J. Cai, J. Hong, Y. Wang and Y. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis, SIAM J. Numer. Anal., 53 (2015), 1918-1940.
doi: 10.1137/140971609.
|
[6]
|
J. Cai and J. Shen, Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs, J. Comput. Phys., 401 (2020), 108975, 17 pp.
doi: 10.1016/j.jcp.2019.108975.
|
[7]
|
J. Cai, Y. Wang and H. Liang, Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system, J. Comput. Phys., 239 (2013), 30-50.
doi: 10.1016/j.jcp.2012.12.036.
|
[8]
|
J. Cai and Y. Wang, Local structure-preserving algorithms for the "good" Boussinesq equation, J. Comput. Phys., 239 (2013), 72-89.
doi: 10.1016/j.jcp.2013.01.009.
|
[9]
|
J. Cai, Y. Wang and C. Jiang, Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs, Comput. Phys. Comm., 235 (2019), 210-220.
doi: 10.1016/j.cpc.2018.08.015.
|
[10]
|
E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method, J. Comput. Phys., 231 (2012), 6770-6789.
doi: 10.1016/j.jcp.2012.06.022.
|
[11]
|
Q. Cheng, C. Liu and J. Shen, A new lagrange multiplier approach for gradient flows, Comput. Methods Appl. Mech. Engrg., 367 (2020), 113070, 20 pp.
doi: 10.1016/j.cma.2020.113070.
|
[12]
|
Q. Cheng, J. Shen and X. Yang, Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 78 (2019), 1467-1487.
doi: 10.1007/s10915-018-0832-5.
|
[13]
|
A. Christlieb, J. Jones, K. Promislow, B. Wetton and M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), 193-215.
doi: 10.1016/j.jcp.2013.09.049.
|
[14]
|
N. Del Buono and C. Mastroserio, Explicit methods based on a class of four stage fourth order Runge–Kutta methods for preserving quadratic laws, J. Comput. Appl. Math., 140 (2002), 231-243.
doi: 10.1016/S0377-0427(01)00398-3.
|
[15]
|
M. Doi, Onsager's variational principle in soft matter, J. Phys.: Condens. Matter, 23 (2011), 284118.
doi: 10.1088/0953-8984/23/28/284118.
|
[16]
|
D. Furihata, Finite difference schemes for $\partial u/\partial t = (\partial/\partial x)^\alpha\delta G/\delta u$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377.
|
[17]
|
Y. Gong, J. Cai and Y. Wang, Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys., 279 (2014), 80-102.
doi: 10.1016/j.jcp.2014.09.001.
|
[18]
|
Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48-71.
doi: 10.1016/j.jcp.2014.08.001.
|
[19]
|
M. Guina and S. M. Wang, Molecular Beam Epitaxy, Elsevier, 2013.
|
[20]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer, Heidelberg, 2010.
|
[21]
|
Q. Hong, J. Li and Q. Wang, Supplementary variable method for structure-preserving approximations to partial differential equations with deduced equations, Appl. Math. Lett., 110 (2020), 106576, 9 pp.
doi: 10.1016/j.aml.2020.106576.
|
[22]
|
Q. Hong, Y. Wang and Y. Gong, Optimal error estimate of two linear and momentum-preserving Fourier pseudo-spectral schemes for the RLW equation, Numer. Methods Partial Differential Equations, 36 (2020), 394-417.
doi: 10.1002/num.22434.
|
[23]
|
L. Huang, Z. Tian and Y. Cai, Compact local structure-preserving algorithms for the nonlinear Schrödinger equation with wave operator, Math. Probl. Eng., 2020 (2020), 4345278, 12 pp.
doi: 10.1155/2020/4345278.
|
[24]
|
B. Li and J. Liu, Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713-743.
doi: 10.1017/S095679250300528X.
|
[25]
|
Y.-W. Li and X. Wu, Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems, SIAM J. Numer. Anal., 54 (2016), 2036-2059.
doi: 10.1137/15M1032752.
|
[26]
|
J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199 (1998), 351-395.
doi: 10.1007/s002200050505.
|
[27]
|
Z. Mu, Y. Gong, W. Cai and Y. Wang, Efficient local energy dissipation preserving algorithms for the Cahn-Hilliard equation, J. Comput. Phys., 374 (2018), 654-667.
doi: 10.1016/j.jcp.2018.08.004.
|
[28]
|
Z. Qiao, Z. Zhang and T. Tang, An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), 1395-1414.
doi: 10.1137/100812781.
|
[29]
|
S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), 473-499.
doi: 10.1006/jcph.1999.6372.
|
[30]
|
J. Shen, C. Wang, X. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Enrich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.
doi: 10.1137/110822839.
|
[31]
|
J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895-2912.
doi: 10.1137/17M1159968.
|
[32]
|
J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416.
doi: 10.1016/j.jcp.2017.10.021.
|
[33]
|
J. Shen, X. Yang, B. Wetton and M. Willoughby, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Disc. Conti. Dyn. Syst. Ser. A, 28 (2010), 1669-1691.
doi: 10.3934/dcds.2010.28.1669.
|
[34]
|
S. Sun, J. Li, J. Zhao and Q. Wang, Structure-preserving numerical approximations to a non-isothermal hydrodynamic model of binary fluid flows, J. Sci. Comput., 83 (2020), 50, 43 pp.
doi: 10.1007/s10915-020-01229-6.
|
[35]
|
W. Tang and Y. Sun, Time finite element methods: A unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219 (2012), 2158-2179.
doi: 10.1016/j.amc.2012.08.062.
|
[36]
|
Y. Wang and J. Hong, Multi-symplectic algorithms for Hamiltonian partial differential equations, Commun. Appl. Math. Comput, 27 (2013), 163-230.
|
[37]
|
Y. Wang, B. Wang and M. Qin, Local structure-preserving algorithms for partial differential equations, Sci. China Ser. A, 51 (2008), 2115-2136.
doi: 10.1007/s11425-008-0046-7.
|
[38]
|
C. Wang, X. Wang and S. M. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., 28 (2010), 405-423.
doi: 10.3934/dcds.2010.28.405.
|
[39]
|
A. Willoughby and P. Capper, Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics, Springer, 2019.
|
[40]
|
S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269-2288.
doi: 10.1137/080738143.
|
[41]
|
X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Disc. Contin. Dyn. Syst. Ser. B, 11 (2009), 1057-1070.
doi: 10.3934/dcdsb.2009.11.1057.
|
[42]
|
X.-G. Yang, M. G. Forest and Q. Wang, Near equilibrium dynamics and one-dimensional spatial-temporal structures of polar active liquid crystals, Chin. Phys. B, 23 (2014), 118701.
doi: 10.1088/1674-1056/23/11/118701.
|
[43]
|
X. Yang, J. Li, M. G. Forest and Q. Wang, Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager principle, Entropy, 18 (2016), 202, 28 pp.
doi: 10.3390/e18060202.
|
[44]
|
X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333 (2017), 104-127.
doi: 10.1016/j.jcp.2016.12.025.
|
[45]
|
J. Zhao, Q. Wang and X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on invariant energy quadratization approach, Internat. J. Numer. Methods Engrg., 110 (2017), 279-300.
doi: 10.1002/nme.5372.
|