• Previous Article
    Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media
  • DCDS-B Home
  • This Issue
  • Next Article
    Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection
September  2021, 26(9): 4767-4788. doi: 10.3934/dcdsb.2020312

Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases

1. 

School of Mathematics, Tianjin University, Tianjin 300350, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Yuxiang Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The first author is supported by NSF of China (11701415). The second author is supported by NSF of China (11571187)

In this paper, we study the invasion dynamics of a diffusive pioneer-climax model in monotone and non-monotone cases. For parameter ranges in which the system admits monotone properties, we establish the existence of spreading speeds and their coincidence with the minimum wave speeds by monotone dynamical system theories. The linear determinacy of the minimum wave speeds is also studied by constructing suitable upper solutions. For parameter ranges in which the system is non-monotone, we further determine the existence of spreading speeds and traveling waves by the sandwich technique and upper-lower solution method. Our results generalize the existing results established under monotone assumptions to more general cases.

Citation: Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4767-4788. doi: 10.3934/dcdsb.2020312
References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

show all references

References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

Figure 1.  Typical fitness functions $ f $ and $ g $ in model (1)
Figure 2.  Nullclines and the structure of equilibria of (2) under (3)
Figure 3.  The graph of functions $ \overline{g}(w) $ and $ \underline{g}(w) $ under (H1$ ' $)
Figure 4.  The observed pioneer invasion waves for $ u $ and $ v $
Figure 5.  The observed climax invasion waves for $ u $ and $ v $
[1]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[2]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[3]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[4]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[5]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

[6]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[7]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[8]

Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667

[9]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[10]

Zhaoquan Xu, Chufen Wu. Spreading speeds for a class of non-local convolution differential equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4479-4492. doi: 10.3934/dcdsb.2020108

[11]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[12]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[13]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[14]

Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang. Some recent developments on linear determinacy. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1419-1436. doi: 10.3934/mbe.2013.10.1419

[15]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[16]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[17]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[18]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[19]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[20]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (95)
  • HTML views (225)
  • Cited by (0)

Other articles
by authors

[Back to Top]