doi: 10.3934/dcdsb.2020312

Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases

1. 

School of Mathematics, Tianjin University, Tianjin 300350, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Yuxiang Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The first author is supported by NSF of China (11701415). The second author is supported by NSF of China (11571187)

In this paper, we study the invasion dynamics of a diffusive pioneer-climax model in monotone and non-monotone cases. For parameter ranges in which the system admits monotone properties, we establish the existence of spreading speeds and their coincidence with the minimum wave speeds by monotone dynamical system theories. The linear determinacy of the minimum wave speeds is also studied by constructing suitable upper solutions. For parameter ranges in which the system is non-monotone, we further determine the existence of spreading speeds and traveling waves by the sandwich technique and upper-lower solution method. Our results generalize the existing results established under monotone assumptions to more general cases.

Citation: Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020312
References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

show all references

References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

Figure 1.  Typical fitness functions $ f $ and $ g $ in model (1)
Figure 2.  Nullclines and the structure of equilibria of (2) under (3)
Figure 3.  The graph of functions $ \overline{g}(w) $ and $ \underline{g}(w) $ under (H1$ ' $)
Figure 4.  The observed pioneer invasion waves for $ u $ and $ v $
Figure 5.  The observed climax invasion waves for $ u $ and $ v $
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (22)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]