September  2021, 26(9): 4789-4814. doi: 10.3934/dcdsb.2020313

Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author: Zhi-Cheng Wang

Received  May 2020 Revised  August 2020 Published  September 2021 Early access  October 2020

This paper is concerned with propagation phenomena for an epidemic model describing the circulation of a disease within two populations or two subgroups in periodic media, where the susceptible individuals are assumed to be motionless. The spatial dynamics for the cooperative system obtained by a classical transformation are investigated, including spatially periodic steady state, spreading speeds and pulsating travelling fronts. It is proved that the minimal wave speed is linearly determined and given by a variational formula involving linear eigenvalue problem. Further, we prove that the existence and non-existence of travelling wave solutions of the model are entirely determined by the basic reproduction ratio $ \mathcal{R}_{0} $. As an application, we prove that if the localized amount of infectious individuals are introduced at the beginning, then the solution of such a system has an asymptotic spreading speed in large time and that is exactly coincident with the minimal wave speed.

Citation: Liangliang Deng, Zhi-Cheng Wang. Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4789-4814. doi: 10.3934/dcdsb.2020313
References:
[1]

K. M. AlanazZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[3]

B. Ambrosio, A. Ducrot and S. Ruan, Generalized traveling waves for time-dependent reaction-diffusion systems, Math. Ann., (2020). doi: 10.1007/s00208-020-01998-3.

[4]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetic, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.

[5]

C. BeaumontJ.-B. BurieA. Ducrot and P. Zongo, Propagation of salmonella within an industrial hen house, SIAM J. Appl. Math., 72 (2012), 1113-1148.  doi: 10.1137/110822967.

[6]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032.  doi: 10.1002/cpa.3022.

[7]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. Ⅰ: Periodic framework, J. Eur. Math. Soc., 7 (2005), 173-213.  doi: 10.4171/JEMS/26.

[8]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. Ⅱ: Genaral domains, J. Amer. Math. Soc., 23 (2010), 1-34.  doi: 10.1090/S0894-0347-09-00633-X.

[9]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅰ-Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.

[10]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅱ-biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84 (2005), 1101-1146.  doi: 10.1016/j.matpur.2004.10.006.

[11]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Math. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.

[12]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.

[13]

A. DucrotP. Magal and S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Ration. Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.

[14]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.

[15]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.

[16]

W. E. FitzgibbonC. B. Martin and J. J. Morgan, A diffusive epidemic model with criss-cross dynamics, J. Math. Anal. Appl., 184 (1994), 399-414.  doi: 10.1006/jmaa.1994.1209.

[17]

W. E. Fitzgibbon, J. J. Morgan and G. F. Webb, An outbreak vector-host epidemic model with spatial structure: The 2015-2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Modell., 14 (2017), 7.

[18]

T. Giletti, Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems, Calc. Var. Partial Differ. Equ., 51 (2014), 265-289.  doi: 10.1007/s00526-013-0674-9.

[19]

A. KällénP. Arcuri and J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116 (1985), 377-393.  doi: 10.1016/S0022-5193(85)80276-9.

[20]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[21]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'État à Moscou(Bjul. Moskowskogo Gos. Univ.), Série internationale A, 1 (1937), 1–26.

[22]

K.-Y. Lam and Y. Lou, Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Differ. Equ., 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.

[23]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40; Comm. Pure Appl. Math., 61 (2008), 137–138 (Erratum). doi: 10.1002/cpa.20221.

[24]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.  doi: 10.1016/j.jfa.2010.04.018.

[25]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.

[26]

P. Magal and C. McCluskey, Two group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.  doi: 10.1137/120882056.

[27]

R. H. Martin Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley-Interscience, New York, 1976.

[28]

J. D. Murray, Mathematical Biology I: An Introduction and II: Spatial Models and Biomedical Applications, 3rd ed., Springer, New York, 2002. doi: 10.1007/b98868.

[29]

G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation, European J. Appl. Math., 22 (2011), 169-185.  doi: 10.1017/S0956792511000027.

[30]

G. Nadin, The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator, SIAM J. Math. Anal., 41 (2009/10), 2388-2406.  doi: 10.1137/080743597.

[31]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford Univ. Press, Oxford, 1997. doi: 10.2307/6013.

[32]

N. ShigesadaK. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Population Biol., 30 (1986), 143-160.  doi: 10.1016/0040-5809(86)90029-8.

[33]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995. doi: 10.1090/surv/041.

[34]

D. L. SmithJ. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment, PLoS Biol., 2 (2004), 1957-1964.  doi: 10.1371/journal.pbio.0020368.

[35]

G. Sweers, Strong positivity in $C(\overline{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.  doi: 10.1007/BF02570833.

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.

[37]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.

[38]

X.-S. Wang and X.-Q. Zhao, Pulsating waves of a partially degenerate reaction-diffusion system in a periodic habitat, J. Differ. Equ., 259 (2015), 7238-7259. 

[39]

Z.-C. WangL. Zhang and X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dyn. Differ. Equ., 30 (2018), 379-403.  doi: 10.1007/s10884-016-9546-2.

[40]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[41]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete Contin. Dyn. Syst., 29 (2011), 343-366.  doi: 10.3934/dcds.2011.29.343.

[42]

C. WuD. Xiao and X.-Q. Zhao, Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat, J. Differ. Equ., 255 (2013), 3983-4011.  doi: 10.1016/j.jde.2013.07.058.

[43]

J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.  doi: 10.1137/S0036144599364296.

[44]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dyn. Differ. Equ., 29 (2017), 41-66.  doi: 10.1007/s10884-015-9426-1.

[45]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality, J. Evol. Equ., 20 (2020), 1029-1059.  doi: 10.1007/s00028-019-00544-2.

[46]

G. Zhao and S. Ruan, Spatial and temporal dynamics of a nonlocal viral infection model, SIAM J. Appl. Math., 78 (2018), 1954-1980.  doi: 10.1137/17M1144106.

[47]

L. ZhaoZ.-C. Wang and S. Ruan, Traveling wave solutions in a two-group epidemic model with latent period, Nonlinearity, 30 (2017), 1287-1325.  doi: 10.1088/1361-6544/aa59ae.

[48]

L. ZhaoZ.-C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.  doi: 10.1007/s00285-018-1227-9.

[49]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics (Ouvrages de Mathématiques de la SMC), 2$^{nd}$ edition, Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.

show all references

References:
[1]

K. M. AlanazZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.

[3]

B. Ambrosio, A. Ducrot and S. Ruan, Generalized traveling waves for time-dependent reaction-diffusion systems, Math. Ann., (2020). doi: 10.1007/s00208-020-01998-3.

[4]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetic, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.

[5]

C. BeaumontJ.-B. BurieA. Ducrot and P. Zongo, Propagation of salmonella within an industrial hen house, SIAM J. Appl. Math., 72 (2012), 1113-1148.  doi: 10.1137/110822967.

[6]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032.  doi: 10.1002/cpa.3022.

[7]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. Ⅰ: Periodic framework, J. Eur. Math. Soc., 7 (2005), 173-213.  doi: 10.4171/JEMS/26.

[8]

H. BerestyckiF. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. Ⅱ: Genaral domains, J. Amer. Math. Soc., 23 (2010), 1-34.  doi: 10.1090/S0894-0347-09-00633-X.

[9]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅰ-Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.

[10]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅱ-biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84 (2005), 1101-1146.  doi: 10.1016/j.matpur.2004.10.006.

[11]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Math. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.

[12]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.

[13]

A. DucrotP. Magal and S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Ration. Mech. Anal., 195 (2010), 311-331.  doi: 10.1007/s00205-008-0203-8.

[14]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.

[15]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.

[16]

W. E. FitzgibbonC. B. Martin and J. J. Morgan, A diffusive epidemic model with criss-cross dynamics, J. Math. Anal. Appl., 184 (1994), 399-414.  doi: 10.1006/jmaa.1994.1209.

[17]

W. E. Fitzgibbon, J. J. Morgan and G. F. Webb, An outbreak vector-host epidemic model with spatial structure: The 2015-2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Modell., 14 (2017), 7.

[18]

T. Giletti, Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems, Calc. Var. Partial Differ. Equ., 51 (2014), 265-289.  doi: 10.1007/s00526-013-0674-9.

[19]

A. KällénP. Arcuri and J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116 (1985), 377-393.  doi: 10.1016/S0022-5193(85)80276-9.

[20]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721.  doi: 10.1098/rspa.1927.0118.

[21]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'État à Moscou(Bjul. Moskowskogo Gos. Univ.), Série internationale A, 1 (1937), 1–26.

[22]

K.-Y. Lam and Y. Lou, Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications, J. Dyn. Differ. Equ., 28 (2016), 29-48.  doi: 10.1007/s10884-015-9504-4.

[23]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40; Comm. Pure Appl. Math., 61 (2008), 137–138 (Erratum). doi: 10.1002/cpa.20221.

[24]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.  doi: 10.1016/j.jfa.2010.04.018.

[25]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.

[26]

P. Magal and C. McCluskey, Two group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.  doi: 10.1137/120882056.

[27]

R. H. Martin Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley-Interscience, New York, 1976.

[28]

J. D. Murray, Mathematical Biology I: An Introduction and II: Spatial Models and Biomedical Applications, 3rd ed., Springer, New York, 2002. doi: 10.1007/b98868.

[29]

G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation, European J. Appl. Math., 22 (2011), 169-185.  doi: 10.1017/S0956792511000027.

[30]

G. Nadin, The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator, SIAM J. Math. Anal., 41 (2009/10), 2388-2406.  doi: 10.1137/080743597.

[31]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford Univ. Press, Oxford, 1997. doi: 10.2307/6013.

[32]

N. ShigesadaK. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Population Biol., 30 (1986), 143-160.  doi: 10.1016/0040-5809(86)90029-8.

[33]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995. doi: 10.1090/surv/041.

[34]

D. L. SmithJ. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment, PLoS Biol., 2 (2004), 1957-1964.  doi: 10.1371/journal.pbio.0020368.

[35]

G. Sweers, Strong positivity in $C(\overline{\Omega})$ for elliptic systems, Math. Z., 209 (1992), 251-271.  doi: 10.1007/BF02570833.

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.

[37]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.

[38]

X.-S. Wang and X.-Q. Zhao, Pulsating waves of a partially degenerate reaction-diffusion system in a periodic habitat, J. Differ. Equ., 259 (2015), 7238-7259. 

[39]

Z.-C. WangL. Zhang and X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dyn. Differ. Equ., 30 (2018), 379-403.  doi: 10.1007/s10884-016-9546-2.

[40]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[41]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete Contin. Dyn. Syst., 29 (2011), 343-366.  doi: 10.3934/dcds.2011.29.343.

[42]

C. WuD. Xiao and X.-Q. Zhao, Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat, J. Differ. Equ., 255 (2013), 3983-4011.  doi: 10.1016/j.jde.2013.07.058.

[43]

J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.  doi: 10.1137/S0036144599364296.

[44]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dyn. Differ. Equ., 29 (2017), 41-66.  doi: 10.1007/s10884-015-9426-1.

[45]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality, J. Evol. Equ., 20 (2020), 1029-1059.  doi: 10.1007/s00028-019-00544-2.

[46]

G. Zhao and S. Ruan, Spatial and temporal dynamics of a nonlocal viral infection model, SIAM J. Appl. Math., 78 (2018), 1954-1980.  doi: 10.1137/17M1144106.

[47]

L. ZhaoZ.-C. Wang and S. Ruan, Traveling wave solutions in a two-group epidemic model with latent period, Nonlinearity, 30 (2017), 1287-1325.  doi: 10.1088/1361-6544/aa59ae.

[48]

L. ZhaoZ.-C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.  doi: 10.1007/s00285-018-1227-9.

[49]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics (Ouvrages de Mathématiques de la SMC), 2$^{nd}$ edition, Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.

[1]

Mariusz Bodzioch, Marcin Choiński, Urszula Foryś. SIS criss-cross model of tuberculosis in heterogeneous population. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2169-2188. doi: 10.3934/dcdsb.2019089

[2]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[3]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[4]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[7]

Yi Li, Yaping Wu. Stability of travelling waves with noncritical speeds for double degenerate Fisher-Type equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 149-170. doi: 10.3934/dcdsb.2008.10.149

[8]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure and Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[9]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[10]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[11]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[12]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[13]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[14]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[15]

Khalaf M. Alanazi, Zdzislaw Jackiewicz, Horst R. Thieme. Spreading speeds of rabies with territorial and diffusing rabid foxes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2143-2183. doi: 10.3934/dcdsb.2019222

[16]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

[17]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[18]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[19]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[20]

Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (318)
  • HTML views (264)
  • Cited by (0)

Other articles
by authors

[Back to Top]