• Previous Article
    An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-Shaw cell
doi: 10.3934/dcdsb.2020314

Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

The school of Mathematical Science, Beijing Normal University, Beijing 100875, China

3. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Corresponding author: Zhixian Yu

Received  June 2020 Revised  August 2020 Published  October 2020

This paper is concerned with novel entire solutions originating from three pulsating traveling fronts for nonlocal discrete periodic system (NDPS) on 2-D Lattices
$ \begin{align*} \label{eq1.1} u_{i,j}'(t) = \sum\limits_{k_1\in\mathbb{Z}\backslash \{0\}}\sum\limits_{k_2\in\mathbb{Z}\backslash \{0\} }J(k_1,k_2)\Big[u_{i-k_1,j-k_2}(t)- u_{i,j}(t)\Big]+ f_{i,j}(u_{i,j}(t)).\quad \end{align*} $
More precisely, let
$ \varphi_{i,j;k}(i cos\theta +j sin\theta+v_{k}t)\,\,(k = 1,2,3) $
be the pulsating traveling front of NDPS with the wave speed
$ v_k $
and connecting two different constant states, then NDPS admits an entire solution
$ u_{i,j}(t) $
, which satisfies
$ \begin{align*} &\ \lim\limits_{t\rightarrow-\infty}\Big\{ \sum\limits_{1\leq k\leq3}\sup\limits_{ p_{k-1}(t)\leq \xi\leq p_k(t)} |u_{i,j}(t)-\varphi_{i,j;k}(\xi+v_{k}t+\theta_{k})|\Big\} = 0, \end{align*} $
where
$ \xi = :i \cos\theta +j \sin\theta $
,
$ v_1<v_2<v_3 $
and
$ \theta_{k}\,(k = 1,2) $
is some constant,
$ p_0 = -\infty $
,
$ p_k(t): = -(v_k+v_{k+1})t/2\,\,(k = 1,2) $
and
$ p_3 = +\infty $
.
Citation: Zhixian Yu, Rong Yuan, Shaohua Gan. Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020314
References:
[1]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

Y.-Y. Chen, Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.  doi: 10.5556/j.tkjm.48.2017.2442.  Google Scholar

[4]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[5]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[6]

X. ChenJ.-S. Guo and C.-C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[7]

Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19. doi: 10.1016/j.physd.2018.04.003.  Google Scholar

[8]

C.-P. ChengW.-T. Li and G. Lin, Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.  doi: 10.1093/imamat/hxu038.  Google Scholar

[9]

C.-P. ChengW.-T. Li and Z.-C. Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.  doi: 10.1016/j.nonrwa.2011.12.016.  Google Scholar

[10]

C.-P. ChengW.-T. Li and Z.-C. Wang, Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.  doi: 10.3934/dcdsb.2010.13.559.  Google Scholar

[11]

C.-P. ChengW.-T. Li and Z.-C. Wang, Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.  doi: 10.1093/imamat/hxn003.  Google Scholar

[12]

C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp. doi: 10.1142/S0218127413500776.  Google Scholar

[13]

F.-D. DongW.-T. Li and L. Zhang, Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.  doi: 10.3934/cpaa.2018120.  Google Scholar

[14]

P. C. Fife, Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.  doi: 10.1007/BF00276380.  Google Scholar

[15]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[16]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[17]

J.-S. GuoY. WangC.-H. Wu and C.-C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[18]

J.-S. Guo and C.-H. Wu, Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.  doi: 10.3934/dcds.2010.26.197.  Google Scholar

[19]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[20]

J.-S. Guo and C.-H. Wu, Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.   Google Scholar

[21]

J.-S. Guo and C.-H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[22]

S. MaP. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[23]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[24]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[25]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[26]

C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages. doi: 10.1155/2012/289168.  Google Scholar

[27]

C.-H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[28]

S.-L. WuG.-S. Chen and C.-H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.  doi: 10.1016/j.jde.2018.06.012.  Google Scholar

[29]

S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar

[30]

S.-L. Wu and C.-H. Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.  doi: 10.3934/dcds.2016.36.2329.  Google Scholar

[31]

S.-L. WuZ.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

show all references

References:
[1]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

Y.-Y. Chen, Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.  doi: 10.5556/j.tkjm.48.2017.2442.  Google Scholar

[4]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[5]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[6]

X. ChenJ.-S. Guo and C.-C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[7]

Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19. doi: 10.1016/j.physd.2018.04.003.  Google Scholar

[8]

C.-P. ChengW.-T. Li and G. Lin, Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.  doi: 10.1093/imamat/hxu038.  Google Scholar

[9]

C.-P. ChengW.-T. Li and Z.-C. Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.  doi: 10.1016/j.nonrwa.2011.12.016.  Google Scholar

[10]

C.-P. ChengW.-T. Li and Z.-C. Wang, Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.  doi: 10.3934/dcdsb.2010.13.559.  Google Scholar

[11]

C.-P. ChengW.-T. Li and Z.-C. Wang, Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.  doi: 10.1093/imamat/hxn003.  Google Scholar

[12]

C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp. doi: 10.1142/S0218127413500776.  Google Scholar

[13]

F.-D. DongW.-T. Li and L. Zhang, Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.  doi: 10.3934/cpaa.2018120.  Google Scholar

[14]

P. C. Fife, Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.  doi: 10.1007/BF00276380.  Google Scholar

[15]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[16]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[17]

J.-S. GuoY. WangC.-H. Wu and C.-C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[18]

J.-S. Guo and C.-H. Wu, Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.  doi: 10.3934/dcds.2010.26.197.  Google Scholar

[19]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[20]

J.-S. Guo and C.-H. Wu, Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.   Google Scholar

[21]

J.-S. Guo and C.-H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[22]

S. MaP. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[23]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[24]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[25]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[26]

C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages. doi: 10.1155/2012/289168.  Google Scholar

[27]

C.-H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[28]

S.-L. WuG.-S. Chen and C.-H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.  doi: 10.1016/j.jde.2018.06.012.  Google Scholar

[29]

S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar

[30]

S.-L. Wu and C.-H. Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.  doi: 10.3934/dcds.2016.36.2329.  Google Scholar

[31]

S.-L. WuZ.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

[1]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[2]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[12]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[13]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[14]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[15]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[16]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[20]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]