• Previous Article
    On a matrix-valued PDE characterizing a contraction metric for a periodic orbit
  • DCDS-B Home
  • This Issue
  • Next Article
    Propagation phenomena for a criss-cross infection model with non-diffusive susceptible population in periodic media
September  2021, 26(9): 4815-4838. doi: 10.3934/dcdsb.2020314

Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

The school of Mathematical Science, Beijing Normal University, Beijing 100875, China

3. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Corresponding author: Zhixian Yu

Received  June 2020 Revised  August 2020 Published  September 2021 Early access  October 2020

This paper is concerned with novel entire solutions originating from three pulsating traveling fronts for nonlocal discrete periodic system (NDPS) on 2-D Lattices
$ \begin{align*} \label{eq1.1} u_{i,j}'(t) = \sum\limits_{k_1\in\mathbb{Z}\backslash \{0\}}\sum\limits_{k_2\in\mathbb{Z}\backslash \{0\} }J(k_1,k_2)\Big[u_{i-k_1,j-k_2}(t)- u_{i,j}(t)\Big]+ f_{i,j}(u_{i,j}(t)).\quad \end{align*} $
More precisely, let
$ \varphi_{i,j;k}(i cos\theta +j sin\theta+v_{k}t)\,\,(k = 1,2,3) $
be the pulsating traveling front of NDPS with the wave speed
$ v_k $
and connecting two different constant states, then NDPS admits an entire solution
$ u_{i,j}(t) $
, which satisfies
$ \begin{align*} &\ \lim\limits_{t\rightarrow-\infty}\Big\{ \sum\limits_{1\leq k\leq3}\sup\limits_{ p_{k-1}(t)\leq \xi\leq p_k(t)} |u_{i,j}(t)-\varphi_{i,j;k}(\xi+v_{k}t+\theta_{k})|\Big\} = 0, \end{align*} $
where
$ \xi = :i \cos\theta +j \sin\theta $
,
$ v_1<v_2<v_3 $
and
$ \theta_{k}\,(k = 1,2) $
is some constant,
$ p_0 = -\infty $
,
$ p_k(t): = -(v_k+v_{k+1})t/2\,\,(k = 1,2) $
and
$ p_3 = +\infty $
.
Citation: Zhixian Yu, Rong Yuan, Shaohua Gan. Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4815-4838. doi: 10.3934/dcdsb.2020314
References:
[1]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

Y.-Y. Chen, Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.  doi: 10.5556/j.tkjm.48.2017.2442.  Google Scholar

[4]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[5]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[6]

X. ChenJ.-S. Guo and C.-C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[7]

Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19. doi: 10.1016/j.physd.2018.04.003.  Google Scholar

[8]

C.-P. ChengW.-T. Li and G. Lin, Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.  doi: 10.1093/imamat/hxu038.  Google Scholar

[9]

C.-P. ChengW.-T. Li and Z.-C. Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.  doi: 10.1016/j.nonrwa.2011.12.016.  Google Scholar

[10]

C.-P. ChengW.-T. Li and Z.-C. Wang, Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.  doi: 10.3934/dcdsb.2010.13.559.  Google Scholar

[11]

C.-P. ChengW.-T. Li and Z.-C. Wang, Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.  doi: 10.1093/imamat/hxn003.  Google Scholar

[12]

C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp. doi: 10.1142/S0218127413500776.  Google Scholar

[13]

F.-D. DongW.-T. Li and L. Zhang, Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.  doi: 10.3934/cpaa.2018120.  Google Scholar

[14]

P. C. Fife, Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.  doi: 10.1007/BF00276380.  Google Scholar

[15]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[16]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[17]

J.-S. GuoY. WangC.-H. Wu and C.-C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[18]

J.-S. Guo and C.-H. Wu, Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.  doi: 10.3934/dcds.2010.26.197.  Google Scholar

[19]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[20]

J.-S. Guo and C.-H. Wu, Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.   Google Scholar

[21]

J.-S. Guo and C.-H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[22]

S. MaP. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[23]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[24]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[25]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[26]

C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages. doi: 10.1155/2012/289168.  Google Scholar

[27]

C.-H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[28]

S.-L. WuG.-S. Chen and C.-H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.  doi: 10.1016/j.jde.2018.06.012.  Google Scholar

[29]

S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar

[30]

S.-L. Wu and C.-H. Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.  doi: 10.3934/dcds.2016.36.2329.  Google Scholar

[31]

S.-L. WuZ.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

show all references

References:
[1]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

Y.-Y. Chen, Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.  doi: 10.5556/j.tkjm.48.2017.2442.  Google Scholar

[4]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[5]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[6]

X. ChenJ.-S. Guo and C.-C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.  doi: 10.1007/s00205-007-0103-3.  Google Scholar

[7]

Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19. doi: 10.1016/j.physd.2018.04.003.  Google Scholar

[8]

C.-P. ChengW.-T. Li and G. Lin, Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.  doi: 10.1093/imamat/hxu038.  Google Scholar

[9]

C.-P. ChengW.-T. Li and Z.-C. Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.  doi: 10.1016/j.nonrwa.2011.12.016.  Google Scholar

[10]

C.-P. ChengW.-T. Li and Z.-C. Wang, Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.  doi: 10.3934/dcdsb.2010.13.559.  Google Scholar

[11]

C.-P. ChengW.-T. Li and Z.-C. Wang, Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.  doi: 10.1093/imamat/hxn003.  Google Scholar

[12]

C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp. doi: 10.1142/S0218127413500776.  Google Scholar

[13]

F.-D. DongW.-T. Li and L. Zhang, Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.  doi: 10.3934/cpaa.2018120.  Google Scholar

[14]

P. C. Fife, Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.  doi: 10.1007/BF00276380.  Google Scholar

[15]

J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.  doi: 10.1007/s00208-005-0729-0.  Google Scholar

[16]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[17]

J.-S. GuoY. WangC.-H. Wu and C.-C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[18]

J.-S. Guo and C.-H. Wu, Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.  doi: 10.3934/dcds.2010.26.197.  Google Scholar

[19]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[20]

J.-S. Guo and C.-H. Wu, Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.   Google Scholar

[21]

J.-S. Guo and C.-H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[22]

S. MaP. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[23]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[24]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[25]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[26]

C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages. doi: 10.1155/2012/289168.  Google Scholar

[27]

C.-H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[28]

S.-L. WuG.-S. Chen and C.-H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.  doi: 10.1016/j.jde.2018.06.012.  Google Scholar

[29]

S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar

[30]

S.-L. Wu and C.-H. Hsu, Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.  doi: 10.3934/dcds.2016.36.2329.  Google Scholar

[31]

S.-L. WuZ.-X. Shi and F.-Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.  doi: 10.1016/j.jde.2013.07.049.  Google Scholar

[1]

Léo Girardin. Competition in periodic media:Ⅰ-Existence of pulsating fronts. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1341-1360. doi: 10.3934/dcdsb.2017065

[2]

Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128

[3]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[5]

Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827

[6]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[7]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[8]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[9]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[10]

Tran Ngoc Thach, Nguyen Huy Tuan, Donal O'Regan. Regularized solution for a biharmonic equation with discrete data. Evolution Equations & Control Theory, 2020, 9 (2) : 341-358. doi: 10.3934/eect.2020008

[11]

Giovanni Scilla. Motion of discrete interfaces in low-contrast periodic media. Networks & Heterogeneous Media, 2014, 9 (1) : 169-189. doi: 10.3934/nhm.2014.9.169

[12]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[13]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[14]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[15]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[16]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[17]

Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103

[18]

Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004

[19]

Irina Astashova, Josef Diblík, Evgeniya Korobko. Existence of a solution of discrete Emden-Fowler equation caused by continuous equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4159-4178. doi: 10.3934/dcdss.2021133

[20]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (175)
  • HTML views (266)
  • Cited by (0)

Other articles
by authors

[Back to Top]