    ## On a matrix-valued PDE characterizing a contraction metric for a periodic orbit

 Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

Received  June 2020 Revised  September 2020 Published  October 2020

The stability and the basin of attraction of a periodic orbit can be determined using a contraction metric, i.e., a Riemannian metric with respect to which adjacent solutions contract. A contraction metric does not require knowledge of the position of the periodic orbit and is robust to perturbations.

In this paper we characterize such a Riemannian contraction metric as matrix-valued solution of a linear first-order Partial Differential Equation. This enables the explicit construction of a contraction metric by numerically solving this equation in . In this paper we prove existence and uniqueness of the solution of the PDE and show that it defines a contraction metric.

Citation: Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020315
##### References:
  V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. Google Scholar  G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. Google Scholar  C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. Google Scholar  F. Forni and R. Sepulchre, A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.  doi: 10.1109/TAC.2013.2285771.  Google Scholar  P. Giesl, Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.  doi: 10.1016/j.na.2003.07.020.  Google Scholar  P. Giesl, Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.  doi: 10.1016/j.jmaa.2014.12.010.  Google Scholar  P. Giesl, Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.  doi: 10.1137/18M1220182.  Google Scholar  P. Giesl, Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.  doi: 10.3934/dcds.2019218.  Google Scholar  P. Giesl and H. Wendland, Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.  doi: 10.1137/16M1092842.  Google Scholar  P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. Google Scholar  P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.  doi: 10.2307/1993939.  Google Scholar  A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko, Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520. Google Scholar  G. A. Leonov, On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.  doi: 10.1016/S0021-8928(98)00067-7.  Google Scholar  G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-0193-3.  Google Scholar  W. Lohmiller and J.-J. E. Slotine, On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.  doi: 10.1016/S0005-1098(98)00019-3.  Google Scholar  Ian R. Manchester and J.-J. E. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.  doi: 10.1016/j.sysconle.2013.10.005.  Google Scholar  G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar  B. T. Stenström, Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.  doi: 10.7146/math.scand.a-10661.  Google Scholar

show all references

##### References:
  V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. Google Scholar  G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. Google Scholar  C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. Google Scholar  F. Forni and R. Sepulchre, A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.  doi: 10.1109/TAC.2013.2285771.  Google Scholar  P. Giesl, Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.  doi: 10.1016/j.na.2003.07.020.  Google Scholar  P. Giesl, Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.  doi: 10.1016/j.jmaa.2014.12.010.  Google Scholar  P. Giesl, Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.  doi: 10.1137/18M1220182.  Google Scholar  P. Giesl, Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.  doi: 10.3934/dcds.2019218.  Google Scholar  P. Giesl and H. Wendland, Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.  doi: 10.1137/16M1092842.  Google Scholar  P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. Google Scholar  P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.  doi: 10.2307/1993939.  Google Scholar  A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko, Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520. Google Scholar  G. A. Leonov, On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.  doi: 10.1016/S0021-8928(98)00067-7.  Google Scholar  G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-0193-3.  Google Scholar  W. Lohmiller and J.-J. E. Slotine, On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.  doi: 10.1016/S0005-1098(98)00019-3.  Google Scholar  Ian R. Manchester and J.-J. E. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.  doi: 10.1016/j.sysconle.2013.10.005.  Google Scholar  G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar  B. T. Stenström, Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.  doi: 10.7146/math.scand.a-10661.  Google Scholar
  Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264  Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047  Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432  Yichen Zhang, Meiqiang Feng. A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317  Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074  Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374  S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012  Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073  Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240  Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164  Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050  Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 1.27