-
Previous Article
On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions
- DCDS-B Home
- This Issue
-
Next Article
System specific triangulations for the construction of CPA Lyapunov functions
On a matrix-valued PDE characterizing a contraction metric for a periodic orbit
Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom |
The stability and the basin of attraction of a periodic orbit can be determined using a contraction metric, i.e., a Riemannian metric with respect to which adjacent solutions contract. A contraction metric does not require knowledge of the position of the periodic orbit and is robust to perturbations.
In this paper we characterize such a Riemannian contraction metric as matrix-valued solution of a linear first-order Partial Differential Equation. This enables the explicit construction of a contraction metric by numerically solving this equation in [
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
show all references
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[4] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[5] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[6] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[7] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[8] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[9] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[10] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[11] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[12] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[13] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[14] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[15] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[16] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[17] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[18] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[19] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]