-
Previous Article
Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model
- DCDS-B Home
- This Issue
-
Next Article
Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics
On a matrix-valued PDE characterizing a contraction metric for a periodic orbit
Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom |
The stability and the basin of attraction of a periodic orbit can be determined using a contraction metric, i.e., a Riemannian metric with respect to which adjacent solutions contract. A contraction metric does not require knowledge of the position of the periodic orbit and is robust to perturbations.
In this paper we characterize such a Riemannian contraction metric as matrix-valued solution of a linear first-order Partial Differential Equation. This enables the explicit construction of a contraction metric by numerically solving this equation in [
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
show all references
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
[1] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[2] |
Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310 |
[3] |
Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731 |
[4] |
Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289 |
[5] |
Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1 |
[6] |
Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793 |
[7] |
Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 |
[8] |
Antonio Siconolfi, Gabriele Terrone. A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4409-4427. doi: 10.3934/dcds.2012.32.4409 |
[9] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[10] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[11] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[12] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[13] |
Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333 |
[14] |
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 |
[15] |
Roberto Triggiani. A matrix-valued generator $\mathcal{A}$ with strong boundary coupling: A critical subspace of $D((-\mathcal{A})^{\frac{1}{2}})$ and $D((-\mathcal{A}^*)^{\frac{1}{2}})$ and implications. Evolution Equations and Control Theory, 2016, 5 (1) : 185-199. doi: 10.3934/eect.2016.5.185 |
[16] |
Jaime Angulo Pava, Borys Alvarez Samaniego. Existence and stability of periodic travelling-wavesolutions of the Benjamin equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 367-388. doi: 10.3934/cpaa.2005.4.367 |
[17] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[18] |
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080 |
[19] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[20] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]