doi: 10.3934/dcdsb.2020317

A stochastic differential equation SIS epidemic model with regime switching

1. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

2. 

School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China

* Corresponding author: yongmei.cai@nottingham.edu.cn

Received  February 2020 Revised  September 2020 Published  November 2020

In this paper, we combined the previous model in [2] with Gray et al.'s work in 2012 [8] to add telegraph noise by using Markovian switching to generate a stochastic SIS epidemic model with regime switching. Similarly, threshold value for extinction and persistence are then given and proved, followed by explanation on the stationary distribution, where the $ M $-matrix theory elaborated in [20] is fully applied. Computer simulations are clearly illustrated with different sets of parameters, which support our theoretical results. Compared to our previous work in 2019 [2, 3], our threshold value are given based on the overall behaviour of the solution but not separately specified in every state of the Markov chain.

Citation: Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020317
References:
[1]

W. J. Anderson, Continuous-time Markov Chains: An Applications-Oriented Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536–1550, http://www.sciencedirect.com/science/article/pii/S0022247X19301635. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[3]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two correlated Brownian motions, J. Math. Anal. Appl., 474 (2019), 1536–1550, https://doi.org/10.1007/s11071-019-05114-2. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[4]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Applied Mathematical Modelling, 64 (2018), 357–371, http://www.sciencedirect.com/science/article/pii/S0307904X18303500. doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[5]

Y. Cai, S. Cai and X. Mao, Stochastic delay foraging arena predator–prey system with Markov switching, Stochastic Analysis and Applications, 38 (2020), 191–212, https://doi.org/10.1080/07362994.2019.1679645. doi: 10.1080/07362994.2019.1679645.  Google Scholar

[6]

Y. Cai, S. Cai and X. Mao, Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92 (2020), 193–222. https://doi.org/10.1080/17442508.2019.1612897. doi: 10.1080/17442508.2019.1612897.  Google Scholar

[7]

T. H. Fleming and J. N. Holland, The evolution of obligate pollination mutualisms: Senita cactus and senita moth, Oecologia, 114 (1998), 368-375.  doi: 10.1007/s004420050459.  Google Scholar

[8]

A. GrayD. GreenhalghX. Mao and J. Pan, The SIS epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.  doi: 10.1016/j.jmaa.2012.05.029.  Google Scholar

[9]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[10]

D. Greenhalgh and Y. Liang, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A: Statistical Mechanics and its Applications, 462 (2016), 684-704.  doi: 10.1016/j.physa.2016.06.125.  Google Scholar

[11]

J. D. Hamilton, Regime switching models, The New Palgrave Dictionary of Economics, 2016, 1–7. Google Scholar

[12]

A. Hening and D. H. Nguyen, Stochastic Lotka–Volterra food chains, Journal of Mathematical Biology, 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.  Google Scholar

[13]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.  Google Scholar

[14]

J. N. Holland and T. H. Fleming, Geographic and population variation in pollinating seed-consuming interactions between senita cacti (Lophocereus schottii) and senita moths (Upiga virescens), Oecologia, 121 (1999), 405-410.  doi: 10.1007/s004420050945.  Google Scholar

[15]

J. N. HollandD. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, The University of Chicago Press, 159 (2002), 231-244.   Google Scholar

[16]

R. Khasminskii, Stochastic Stability of Differential Equations, 66. Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[17]

X. LiD. Jiang and X. Mao, Population dynamical behavior of Lotka–Volterra system under regime switching, Journal of Computational and Applied Mathematics, 232 (2009), 427-448.  doi: 10.1016/j.cam.2009.06.021.  Google Scholar

[18]

H. LiuX. Li and Q. Yang, The ergodic property and positive recurrence of a multi-group Lotka–Volterra mutualistic system with regime switching, Systems & Control Letters, 62 (2013), 805-810.  doi: 10.1016/j.sysconle.2013.06.002.  Google Scholar

[19]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and applications, 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[20]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[21]

J. R. Norris, Markov Chains, Cambridge University Press, 1998. doi: 10.1017/CBO9780511810633.  Google Scholar

[22]

S. PangF. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A: Mathematical Analysis, 15 (2008), 603-620.   Google Scholar

[23]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256.  doi: 10.2307/1936370.  Google Scholar

[24]

L. S. Tsimring, Noise in biology, IOP Publishing, 77 (2014), 026601. doi: 10.1088/0034-4885/77/2/026601.  Google Scholar

[25]

Y. TakeuchiN. H. DuN. T. Hieu and K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, Journal of Mathematical Analysis and Applications, 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[26]

D. A. Vasseur and P. Yodzis, The color of environmental noise, Wiley Online Library, 85 (2004), 1146-1152.   Google Scholar

[27]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Springer, 37, 2012. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[28]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46 (2007), 1155-1179.  doi: 10.1137/060649343.  Google Scholar

show all references

References:
[1]

W. J. Anderson, Continuous-time Markov Chains: An Applications-Oriented Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536–1550, http://www.sciencedirect.com/science/article/pii/S0022247X19301635. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[3]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two correlated Brownian motions, J. Math. Anal. Appl., 474 (2019), 1536–1550, https://doi.org/10.1007/s11071-019-05114-2. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[4]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Applied Mathematical Modelling, 64 (2018), 357–371, http://www.sciencedirect.com/science/article/pii/S0307904X18303500. doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[5]

Y. Cai, S. Cai and X. Mao, Stochastic delay foraging arena predator–prey system with Markov switching, Stochastic Analysis and Applications, 38 (2020), 191–212, https://doi.org/10.1080/07362994.2019.1679645. doi: 10.1080/07362994.2019.1679645.  Google Scholar

[6]

Y. Cai, S. Cai and X. Mao, Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92 (2020), 193–222. https://doi.org/10.1080/17442508.2019.1612897. doi: 10.1080/17442508.2019.1612897.  Google Scholar

[7]

T. H. Fleming and J. N. Holland, The evolution of obligate pollination mutualisms: Senita cactus and senita moth, Oecologia, 114 (1998), 368-375.  doi: 10.1007/s004420050459.  Google Scholar

[8]

A. GrayD. GreenhalghX. Mao and J. Pan, The SIS epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.  doi: 10.1016/j.jmaa.2012.05.029.  Google Scholar

[9]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[10]

D. Greenhalgh and Y. Liang, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A: Statistical Mechanics and its Applications, 462 (2016), 684-704.  doi: 10.1016/j.physa.2016.06.125.  Google Scholar

[11]

J. D. Hamilton, Regime switching models, The New Palgrave Dictionary of Economics, 2016, 1–7. Google Scholar

[12]

A. Hening and D. H. Nguyen, Stochastic Lotka–Volterra food chains, Journal of Mathematical Biology, 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.  Google Scholar

[13]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.  Google Scholar

[14]

J. N. Holland and T. H. Fleming, Geographic and population variation in pollinating seed-consuming interactions between senita cacti (Lophocereus schottii) and senita moths (Upiga virescens), Oecologia, 121 (1999), 405-410.  doi: 10.1007/s004420050945.  Google Scholar

[15]

J. N. HollandD. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, The University of Chicago Press, 159 (2002), 231-244.   Google Scholar

[16]

R. Khasminskii, Stochastic Stability of Differential Equations, 66. Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[17]

X. LiD. Jiang and X. Mao, Population dynamical behavior of Lotka–Volterra system under regime switching, Journal of Computational and Applied Mathematics, 232 (2009), 427-448.  doi: 10.1016/j.cam.2009.06.021.  Google Scholar

[18]

H. LiuX. Li and Q. Yang, The ergodic property and positive recurrence of a multi-group Lotka–Volterra mutualistic system with regime switching, Systems & Control Letters, 62 (2013), 805-810.  doi: 10.1016/j.sysconle.2013.06.002.  Google Scholar

[19]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and applications, 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[20]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[21]

J. R. Norris, Markov Chains, Cambridge University Press, 1998. doi: 10.1017/CBO9780511810633.  Google Scholar

[22]

S. PangF. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A: Mathematical Analysis, 15 (2008), 603-620.   Google Scholar

[23]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256.  doi: 10.2307/1936370.  Google Scholar

[24]

L. S. Tsimring, Noise in biology, IOP Publishing, 77 (2014), 026601. doi: 10.1088/0034-4885/77/2/026601.  Google Scholar

[25]

Y. TakeuchiN. H. DuN. T. Hieu and K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, Journal of Mathematical Analysis and Applications, 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[26]

D. A. Vasseur and P. Yodzis, The color of environmental noise, Wiley Online Library, 85 (2004), 1146-1152.   Google Scholar

[27]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Springer, 37, 2012. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[28]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46 (2007), 1155-1179.  doi: 10.1137/060649343.  Google Scholar

Figure 1.  Extinction with $ I(0) = 90 $
Figure 2.  Extinction with $ I(0) = 10 $
Figure 3.  Persistence Case 1 with $ I(0) = 90 $
Figure 4.  Persistence Case 1 with $ I(0) = 10 $
Figure 5.  Persistence Case 2 with $ I(0) = 90 $
Figure 6.  Persistence Case 2 with $ I(0) = 10 $
Figure 7.  Stationary Distribution Case 1 with $ I(0) = 90 $
Figure 8.  Stationary Distribution Case 1 with $ I(0) = 10 $
Figure 9.  Stationary Distribution Case 2 with $ I(0) = 90 $
Figure 10.  Stationary Distribution Case 2 with $ I(0) = 10 $
[1]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[2]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[3]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[8]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[9]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[10]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[11]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[12]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[13]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[16]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[17]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[20]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]