• Previous Article
    A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation
  • DCDS-B Home
  • This Issue
  • Next Article
    Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model
September  2021, 26(9): 4887-4905. doi: 10.3934/dcdsb.2020317

A stochastic differential equation SIS epidemic model with regime switching

1. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

2. 

School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China

* Corresponding author: yongmei.cai@nottingham.edu.cn

Received  February 2020 Revised  September 2020 Published  September 2021 Early access  November 2020

In this paper, we combined the previous model in [2] with Gray et al.'s work in 2012 [8] to add telegraph noise by using Markovian switching to generate a stochastic SIS epidemic model with regime switching. Similarly, threshold value for extinction and persistence are then given and proved, followed by explanation on the stationary distribution, where the $ M $-matrix theory elaborated in [20] is fully applied. Computer simulations are clearly illustrated with different sets of parameters, which support our theoretical results. Compared to our previous work in 2019 [2, 3], our threshold value are given based on the overall behaviour of the solution but not separately specified in every state of the Markov chain.

Citation: Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317
References:
[1]

W. J. Anderson, Continuous-time Markov Chains: An Applications-Oriented Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536–1550, http://www.sciencedirect.com/science/article/pii/S0022247X19301635. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[3]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two correlated Brownian motions, J. Math. Anal. Appl., 474 (2019), 1536–1550, https://doi.org/10.1007/s11071-019-05114-2. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[4]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Applied Mathematical Modelling, 64 (2018), 357–371, http://www.sciencedirect.com/science/article/pii/S0307904X18303500. doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[5]

Y. Cai, S. Cai and X. Mao, Stochastic delay foraging arena predator–prey system with Markov switching, Stochastic Analysis and Applications, 38 (2020), 191–212, https://doi.org/10.1080/07362994.2019.1679645. doi: 10.1080/07362994.2019.1679645.  Google Scholar

[6]

Y. Cai, S. Cai and X. Mao, Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92 (2020), 193–222. https://doi.org/10.1080/17442508.2019.1612897. doi: 10.1080/17442508.2019.1612897.  Google Scholar

[7]

T. H. Fleming and J. N. Holland, The evolution of obligate pollination mutualisms: Senita cactus and senita moth, Oecologia, 114 (1998), 368-375.  doi: 10.1007/s004420050459.  Google Scholar

[8]

A. GrayD. GreenhalghX. Mao and J. Pan, The SIS epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.  doi: 10.1016/j.jmaa.2012.05.029.  Google Scholar

[9]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[10]

D. Greenhalgh and Y. Liang, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A: Statistical Mechanics and its Applications, 462 (2016), 684-704.  doi: 10.1016/j.physa.2016.06.125.  Google Scholar

[11]

J. D. Hamilton, Regime switching models, The New Palgrave Dictionary of Economics, 2016, 1–7. Google Scholar

[12]

A. Hening and D. H. Nguyen, Stochastic Lotka–Volterra food chains, Journal of Mathematical Biology, 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.  Google Scholar

[13]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.  Google Scholar

[14]

J. N. Holland and T. H. Fleming, Geographic and population variation in pollinating seed-consuming interactions between senita cacti (Lophocereus schottii) and senita moths (Upiga virescens), Oecologia, 121 (1999), 405-410.  doi: 10.1007/s004420050945.  Google Scholar

[15]

J. N. HollandD. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, The University of Chicago Press, 159 (2002), 231-244.   Google Scholar

[16]

R. Khasminskii, Stochastic Stability of Differential Equations, 66. Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[17]

X. LiD. Jiang and X. Mao, Population dynamical behavior of Lotka–Volterra system under regime switching, Journal of Computational and Applied Mathematics, 232 (2009), 427-448.  doi: 10.1016/j.cam.2009.06.021.  Google Scholar

[18]

H. LiuX. Li and Q. Yang, The ergodic property and positive recurrence of a multi-group Lotka–Volterra mutualistic system with regime switching, Systems & Control Letters, 62 (2013), 805-810.  doi: 10.1016/j.sysconle.2013.06.002.  Google Scholar

[19]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and applications, 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[20]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[21]

J. R. Norris, Markov Chains, Cambridge University Press, 1998. doi: 10.1017/CBO9780511810633.  Google Scholar

[22]

S. PangF. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A: Mathematical Analysis, 15 (2008), 603-620.   Google Scholar

[23]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256.  doi: 10.2307/1936370.  Google Scholar

[24]

L. S. Tsimring, Noise in biology, IOP Publishing, 77 (2014), 026601. doi: 10.1088/0034-4885/77/2/026601.  Google Scholar

[25]

Y. TakeuchiN. H. DuN. T. Hieu and K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, Journal of Mathematical Analysis and Applications, 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[26]

D. A. Vasseur and P. Yodzis, The color of environmental noise, Wiley Online Library, 85 (2004), 1146-1152.   Google Scholar

[27]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Springer, 37, 2012. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[28]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46 (2007), 1155-1179.  doi: 10.1137/060649343.  Google Scholar

show all references

References:
[1]

W. J. Anderson, Continuous-time Markov Chains: An Applications-Oriented Approach, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[2]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two independent Brownian motions, Journal of Mathematical Analysis and Applications, 474 (2019), 1536–1550, http://www.sciencedirect.com/science/article/pii/S0022247X19301635. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[3]

S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two correlated Brownian motions, J. Math. Anal. Appl., 474 (2019), 1536–1550, https://doi.org/10.1007/s11071-019-05114-2. doi: 10.1016/j.jmaa.2019.02.039.  Google Scholar

[4]

Y. Cai and X. Mao, Stochastic prey-predator system with foraging arena scheme, Applied Mathematical Modelling, 64 (2018), 357–371, http://www.sciencedirect.com/science/article/pii/S0307904X18303500. doi: 10.1016/j.apm.2018.07.034.  Google Scholar

[5]

Y. Cai, S. Cai and X. Mao, Stochastic delay foraging arena predator–prey system with Markov switching, Stochastic Analysis and Applications, 38 (2020), 191–212, https://doi.org/10.1080/07362994.2019.1679645. doi: 10.1080/07362994.2019.1679645.  Google Scholar

[6]

Y. Cai, S. Cai and X. Mao, Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92 (2020), 193–222. https://doi.org/10.1080/17442508.2019.1612897. doi: 10.1080/17442508.2019.1612897.  Google Scholar

[7]

T. H. Fleming and J. N. Holland, The evolution of obligate pollination mutualisms: Senita cactus and senita moth, Oecologia, 114 (1998), 368-375.  doi: 10.1007/s004420050459.  Google Scholar

[8]

A. GrayD. GreenhalghX. Mao and J. Pan, The SIS epidemic model with Markovian switching, Journal of Mathematical Analysis and Applications, 394 (2012), 496-516.  doi: 10.1016/j.jmaa.2012.05.029.  Google Scholar

[9]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[10]

D. Greenhalgh and Y. Liang, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A: Statistical Mechanics and its Applications, 462 (2016), 684-704.  doi: 10.1016/j.physa.2016.06.125.  Google Scholar

[11]

J. D. Hamilton, Regime switching models, The New Palgrave Dictionary of Economics, 2016, 1–7. Google Scholar

[12]

A. Hening and D. H. Nguyen, Stochastic Lotka–Volterra food chains, Journal of Mathematical Biology, 77 (2018), 135-163.  doi: 10.1007/s00285-017-1192-8.  Google Scholar

[13]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.  Google Scholar

[14]

J. N. Holland and T. H. Fleming, Geographic and population variation in pollinating seed-consuming interactions between senita cacti (Lophocereus schottii) and senita moths (Upiga virescens), Oecologia, 121 (1999), 405-410.  doi: 10.1007/s004420050945.  Google Scholar

[15]

J. N. HollandD. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, The University of Chicago Press, 159 (2002), 231-244.   Google Scholar

[16]

R. Khasminskii, Stochastic Stability of Differential Equations, 66. Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.  Google Scholar

[17]

X. LiD. Jiang and X. Mao, Population dynamical behavior of Lotka–Volterra system under regime switching, Journal of Computational and Applied Mathematics, 232 (2009), 427-448.  doi: 10.1016/j.cam.2009.06.021.  Google Scholar

[18]

H. LiuX. Li and Q. Yang, The ergodic property and positive recurrence of a multi-group Lotka–Volterra mutualistic system with regime switching, Systems & Control Letters, 62 (2013), 805-810.  doi: 10.1016/j.sysconle.2013.06.002.  Google Scholar

[19]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and applications, 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.  Google Scholar

[20]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[21]

J. R. Norris, Markov Chains, Cambridge University Press, 1998. doi: 10.1017/CBO9780511810633.  Google Scholar

[22]

S. PangF. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A: Mathematical Analysis, 15 (2008), 603-620.   Google Scholar

[23]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256.  doi: 10.2307/1936370.  Google Scholar

[24]

L. S. Tsimring, Noise in biology, IOP Publishing, 77 (2014), 026601. doi: 10.1088/0034-4885/77/2/026601.  Google Scholar

[25]

Y. TakeuchiN. H. DuN. T. Hieu and K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, Journal of Mathematical Analysis and Applications, 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.  Google Scholar

[26]

D. A. Vasseur and P. Yodzis, The color of environmental noise, Wiley Online Library, 85 (2004), 1146-1152.   Google Scholar

[27]

G. G. Yin and Q. Zhang, Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Springer, 37, 2012. doi: 10.1007/978-1-4614-4346-9.  Google Scholar

[28]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM Journal on Control and Optimization, 46 (2007), 1155-1179.  doi: 10.1137/060649343.  Google Scholar

Figure 1.  Extinction with $ I(0) = 90 $
Figure 2.  Extinction with $ I(0) = 10 $
Figure 3.  Persistence Case 1 with $ I(0) = 90 $
Figure 4.  Persistence Case 1 with $ I(0) = 10 $
Figure 5.  Persistence Case 2 with $ I(0) = 90 $
Figure 6.  Persistence Case 2 with $ I(0) = 10 $
Figure 7.  Stationary Distribution Case 1 with $ I(0) = 90 $
Figure 8.  Stationary Distribution Case 1 with $ I(0) = 10 $
Figure 9.  Stationary Distribution Case 2 with $ I(0) = 90 $
Figure 10.  Stationary Distribution Case 2 with $ I(0) = 10 $
[1]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[2]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[3]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[4]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[5]

Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249

[6]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial & Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[7]

Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280

[8]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[9]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[10]

Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032

[11]

Mustapha Ait Rami, Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth. Stability criteria for SIS epidemiological models under switching policies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2865-2887. doi: 10.3934/dcdsb.2014.19.2865

[12]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[13]

Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491

[14]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[15]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[16]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[17]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[18]

Michael Damron, C. L. Winter. A non-Markovian model of rill erosion. Networks & Heterogeneous Media, 2009, 4 (4) : 731-753. doi: 10.3934/nhm.2009.4.731

[19]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[20]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (284)
  • HTML views (287)
  • Cited by (0)

Other articles
by authors

[Back to Top]