March  2021, 26(3): 1749-1762. doi: 10.3934/dcdsb.2020318

On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam

 

Received  February 2020 Revised  July 2020 Published  November 2020

Fund Project: This research is supported by a grant from the Vietnam Academy of Science and Technology under the grant number DLTE00.01–20/21

This paper is devoted to study of time-fractional elliptic equations driven by a multiplicative noise. By combining the eigenfunction expansion method for symmetry elliptic operators, the variation of constant formula for strong solutions to scalar stochastic fractional differential equations, Ito's formula and establishing a new weighted norm associated with a Lyapunov–Perron operator defined from this representation of solutions, we show the asymptotic behaviour of solutions to these systems in the mean square sense. As a consequence, we also prove existence, uniqueness and the convergence rate of their solutions.

Citation: Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318
References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

P. T. AnhT. S. Doan and P. T. Huong, A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.  doi: 10.1016/j.spl.2018.10.010.  Google Scholar

[3]

B. BaeumerM. Geissert and M. Kovács, Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.  doi: 10.1016/j.jde.2014.09.020.  Google Scholar

[4]

L. ChenY. Hu and D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.  doi: 10.1016/j.spa.2019.01.003.  Google Scholar

[5]

Z.-Q. ChenK.-H. Kim and P. Kim, Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.  doi: 10.1016/j.spa.2014.11.005.  Google Scholar

[6]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[7]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998.  Google Scholar

[9]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[10]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[11]

R. GorenfloY. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[12]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[13]

P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[14]

W. LiuM. Röckner and J. L. da Silva., Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.  doi: 10.1137/17M1144593.  Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[18]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

D. T. SonP. T. HuongP. E. Kloeden and H. T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.  doi: 10.1080/07362994.2018.1440243.  Google Scholar

[21]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[22]

R. Zacher, A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

show all references

References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

P. T. AnhT. S. Doan and P. T. Huong, A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.  doi: 10.1016/j.spl.2018.10.010.  Google Scholar

[3]

B. BaeumerM. Geissert and M. Kovács, Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.  doi: 10.1016/j.jde.2014.09.020.  Google Scholar

[4]

L. ChenY. Hu and D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.  doi: 10.1016/j.spa.2019.01.003.  Google Scholar

[5]

Z.-Q. ChenK.-H. Kim and P. Kim, Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.  doi: 10.1016/j.spa.2014.11.005.  Google Scholar

[6]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[7]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998.  Google Scholar

[9]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[10]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[11]

R. GorenfloY. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[12]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[13]

P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[14]

W. LiuM. Röckner and J. L. da Silva., Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.  doi: 10.1137/17M1144593.  Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[18]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

D. T. SonP. T. HuongP. E. Kloeden and H. T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.  doi: 10.1080/07362994.2018.1440243.  Google Scholar

[21]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[22]

R. Zacher, A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[1]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[2]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[6]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[9]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[10]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[11]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[15]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[16]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[17]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[18]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[19]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[20]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (107)
  • HTML views (156)
  • Cited by (0)

Other articles
by authors

[Back to Top]