- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Existence results for fractional differential equations in presence of upper and lower solutions
On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam |
This paper is devoted to study of time-fractional elliptic equations driven by a multiplicative noise. By combining the eigenfunction expansion method for symmetry elliptic operators, the variation of constant formula for strong solutions to scalar stochastic fractional differential equations, Ito's formula and establishing a new weighted norm associated with a Lyapunov–Perron operator defined from this representation of solutions, we show the asymptotic behaviour of solutions to these systems in the mean square sense. As a consequence, we also prove existence, uniqueness and the convergence rate of their solutions.
References:
[1] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[2] |
P. T. Anh, T. S. Doan and P. T. Huong,
A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.
doi: 10.1016/j.spl.2018.10.010. |
[3] |
B. Baeumer, M. Geissert and M. Kovács,
Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.
doi: 10.1016/j.jde.2014.09.020. |
[4] |
L. Chen, Y. Hu and D. Nualart,
Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.
doi: 10.1016/j.spa.2019.01.003. |
[5] |
Z.-Q. Chen, K.-H. Kim and P. Kim,
Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.
doi: 10.1016/j.spa.2014.11.005. |
[6] |
N. D. Cong, T. S. Doan, S. Siegmund and H. T. Tuan,
On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.
doi: 10.1016/j.amc.2013.10.010. |
[7] |
S. D. Eidelman and A. N. Kochubei,
Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.
doi: 10.1016/j.jde.2003.12.002. |
[8] |
L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998. |
[9] |
M. Ginoa, S. Cerbelli and H. E. Roman,
Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.
doi: 10.1016/0378-4371(92)90566-9. |
[10] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2. |
[11] |
R. Gorenflo, Y. Luchko and M. Yamamoto,
Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.
doi: 10.1515/fca-2015-0048. |
[12] |
T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655.
doi: 10.1016/j.jmaa.2019.123655. |
[13] |
P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992.
doi: 10.1007/978-3-662-12616-5. |
[14] |
W. Liu, M. Röckner and J. L. da Silva.,
Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.
doi: 10.1137/17M1144593. |
[15] |
R. Metzler and J. Klafter,
Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8. |
[16] |
R. R. Nigmatullin,
The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.
doi: 10.1002/pssb.2221330150. |
[17] |
I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives,
Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999. |
[18] |
H. E. Roman and P. A. Alemany,
Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.
doi: 10.1088/0305-4470/27/10/017. |
[19] |
K. Sakamoto and M. Yamamoto,
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058. |
[20] |
D. T. Son, P. T. Huong, P. E. Kloeden and H. T. Tuan,
Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.
doi: 10.1080/07362994.2018.1440243. |
[21] |
R. Zacher,
Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.
doi: 10.1619/fesi.52.1. |
[22] |
R. Zacher,
A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.
doi: 10.1007/s00208-012-0834-9. |
show all references
References:
[1] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[2] |
P. T. Anh, T. S. Doan and P. T. Huong,
A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.
doi: 10.1016/j.spl.2018.10.010. |
[3] |
B. Baeumer, M. Geissert and M. Kovács,
Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.
doi: 10.1016/j.jde.2014.09.020. |
[4] |
L. Chen, Y. Hu and D. Nualart,
Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.
doi: 10.1016/j.spa.2019.01.003. |
[5] |
Z.-Q. Chen, K.-H. Kim and P. Kim,
Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.
doi: 10.1016/j.spa.2014.11.005. |
[6] |
N. D. Cong, T. S. Doan, S. Siegmund and H. T. Tuan,
On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.
doi: 10.1016/j.amc.2013.10.010. |
[7] |
S. D. Eidelman and A. N. Kochubei,
Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.
doi: 10.1016/j.jde.2003.12.002. |
[8] |
L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998. |
[9] |
M. Ginoa, S. Cerbelli and H. E. Roman,
Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.
doi: 10.1016/0378-4371(92)90566-9. |
[10] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2. |
[11] |
R. Gorenflo, Y. Luchko and M. Yamamoto,
Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.
doi: 10.1515/fca-2015-0048. |
[12] |
T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655.
doi: 10.1016/j.jmaa.2019.123655. |
[13] |
P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992.
doi: 10.1007/978-3-662-12616-5. |
[14] |
W. Liu, M. Röckner and J. L. da Silva.,
Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.
doi: 10.1137/17M1144593. |
[15] |
R. Metzler and J. Klafter,
Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8. |
[16] |
R. R. Nigmatullin,
The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.
doi: 10.1002/pssb.2221330150. |
[17] |
I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives,
Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999. |
[18] |
H. E. Roman and P. A. Alemany,
Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.
doi: 10.1088/0305-4470/27/10/017. |
[19] |
K. Sakamoto and M. Yamamoto,
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058. |
[20] |
D. T. Son, P. T. Huong, P. E. Kloeden and H. T. Tuan,
Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.
doi: 10.1080/07362994.2018.1440243. |
[21] |
R. Zacher,
Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.
doi: 10.1619/fesi.52.1. |
[22] |
R. Zacher,
A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.
doi: 10.1007/s00208-012-0834-9. |
[1] |
Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310 |
[2] |
Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100 |
[3] |
Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021140 |
[4] |
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 |
[5] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[6] |
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 |
[7] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091 |
[8] |
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 |
[9] |
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117 |
[10] |
Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 |
[11] |
Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725 |
[12] |
Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178 |
[13] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[14] |
Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062 |
[15] |
Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312 |
[16] |
Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control and Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044 |
[17] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[18] |
Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027 |
[19] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[20] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]