[1]
|
B. Baeumer and M. M. Meerschaert, Tempered stable Levy motion and transient superdiffusion, J. Comput. Appl. Math., 233 (2010), 2438-2448.
doi: 10.1016/j.cam.2009.10.027.
|
[2]
|
A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A, 374 (2007), 749-763.
doi: 10.1016/j.physa.2006.08.071.
|
[3]
|
S. Chen, J. Shen and L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp., 85 (2016), 1603-1638.
doi: 10.1090/mcom3035.
|
[4]
|
Y. Chen, X. Wang and W. Deng, Tempered fractional Langevin-Brownian motion with inverse $\beta$-stable subordinator, J. Phys. A: Math. Theor., 51 (2018), 495001.
doi: 10.1088/1751-8121/aae8b3.
|
[5]
|
Y. Cheng, X. Meng and Q. Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), 1233-1267.
doi: 10.1090/mcom/3141.
|
[6]
|
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), 7792-7804.
doi: 10.1016/j.jcp.2009.07.021.
|
[7]
|
V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, umer. Methods Partial Differential Eq., 22 (2006), 558-576.
doi: 10.1002/num.20112.
|
[8]
|
L. B. Feng, P. Zhuang, F. Liu, I. Turner and Y. T. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algor., 72 (2016), 749-767.
doi: 10.1007/s11075-015-0065-8.
|
[9]
|
J. L. Gracia and M. Stynes, Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273 (2015), 103-115.
doi: 10.1016/j.cam.2014.05.025.
|
[10]
|
E. Hanert and C. Piret, A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation, SIAM J. Sci. Comput., 36 (2014), 1797-1812.
doi: 10.1137/130927292.
|
[11]
|
Z. Hao, W. Cao and G. Lin, A second-order difference scheme for the time fractional substantial diffusion equation, J. Comput. Appl. Math., 313 (2017), 54-69.
doi: 10.1016/j.cam.2016.09.006.
|
[12]
|
Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285-3290.
doi: 10.1016/j.cam.2011.01.011.
|
[13]
|
B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), 197-221.
doi: 10.1093/imanum/dru063.
|
[14]
|
I. Koponen, Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic process, Phys. Rev. E, 52 (1995), 1197-1199.
doi: 10.1103/PhysRevE.52.1197.
|
[15]
|
T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), 719-736.
doi: 10.1016/j.jcp.2004.11.025.
|
[16]
|
M. Li, X.-M. Gu, C. Huang, M. Fei and G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schr$\ddot{o}$dinger equations, J. Compu. Phys., 358 (2018), 256-282.
doi: 10.1016/j.jcp.2017.12.044.
|
[17]
|
C. Li and F. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, FL,
2015.
|
[18]
|
C. Li and W. Deng, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42 (2016), 543-572.
doi: 10.1007/s10444-015-9434-z.
|
[19]
|
X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.
doi: 10.1137/080718942.
|
[20]
|
S. Liao, Notes on the homotopy analysis method: some definitions and theorems, Commun Nonlinear Sci Numer Simul., 14 (2009), 983-997.
doi: 10.1016/j.cnsns.2008.04.013.
|
[21]
|
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001.
|
[22]
|
F. W. Liu, P. H. Zhuang and Q. X. Liu, The Applications and Numerical Methods of Fractional Differential Equations, Science Press, Beijing, 2015.
|
[23]
|
R. N. Mantegna and H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The truncated Levy flight, Phys. Rev. Lett., 73 (1994), 2946-2949.
doi: 10.1103/PhysRevLett.73.2946.
|
[24]
|
M. M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys., Res. Lett., 35 (2008), 190201.
|
[25]
|
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion ow equations, J. Comput. Appl. Math., 172 (2004), 65-77.
doi: 10.1016/j.cam.2004.01.033.
|
[26]
|
X. Meng, C.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.
doi: 10.1090/mcom/3022.
|
[27]
|
S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910-919.
doi: 10.1016/j.camwa.2006.12.037.
|
[28]
|
J. Q. Murillo and S. B. Yuste, On three explicit difference schemes for fractional diffusion and diffusion-wave equations, Phys. Scr., 136 (2009), 14025-14030.
|
[29]
|
J. Rosinski, Tempering stable processes, Stochastic Process. Appl., 117 (2007), 677-707.
doi: 10.1016/j.spa.2006.10.003.
|
[30]
|
E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22-37.
doi: 10.1016/j.apnum.2014.11.007.
|
[31]
|
M. Stynes, E. O'Riordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057-1079.
doi: 10.1137/16M1082329.
|
[32]
|
Z.-Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193-209.
doi: 10.1016/j.apnum.2005.03.003.
|
[33]
|
H. Wang, D. Yang and S. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM J. Numer. Anal., 52 (2014), 1292-1310.
doi: 10.1137/130932776.
|
[34]
|
L. Wei, X. Zhang and Y. He, Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations, Int. J. Heat. Fluid. Fl., 23 (2013), 634-648.
doi: 10.1108/09615531311323782.
|
[35]
|
L. Wei and Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511-1522.
doi: 10.1016/j.apm.2013.07.040.
|
[36]
|
X. Wu, W. Deng and E. Barkai, Tempered fractional Feynman-Kac equation: Theory and examples, Phys. Rev. E, 93 (2016), 032151.
doi: 10.1103/physreve.93.032151.
|
[37]
|
Y. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), 821-835.
|
[38]
|
Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Comm. Comput. Phys., 7 (2010), 1-46.
doi: 10.4208/cicp.2009.09.023.
|
[39]
|
Y. Yu, W. Deng and J. Wu, Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations, Appl. Numer. Math., 112 (2017), 126-145.
doi: 10.1016/j.apnum.2016.10.011.
|
[40]
|
H. Zhang, F. Liu, I. Turner and S. Chen, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40 (2016), 5819-5834.
doi: 10.1016/j.apm.2016.01.027.
|
[41]
|
Q. Zhang and F.-Z. Gao, A Fully-Discrete Local Discontinuous Galerkin Method for Convection-Dominated Sobolev Equation, J. Sci. Comput., 51 (2012), 107-134.
|
[42]
|
Q. Zhang and C.-W. Shu, Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numer. Math., 126 (2014), – 703-740.
doi: 10.1007/s00211-013-0573-1.
|
[43]
|
Y. Zhao, Y. Zhang, F. Liu, I. Turner, Y. Tang and V. Anh, Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl., 73 (2017), 1087-1099.
doi: 10.1016/j.camwa.2016.05.005.
|