• Previous Article
    Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission
doi: 10.3934/dcdsb.2020320

On existence and uniqueness properties for solutions of stochastic fixed point equations

1. 

ETH Zurich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland

2. 

University of St. Gallen, Faculty of Mathematics and Statistics, Dufourstrasse 50, 9000 St. Gallen, Switzerland

3. 

LMU Munich, Department of Mathematics, Theresienstraße 39, 80333 München, Germany

4. 

University of Duisburg-Essen, Faculty of Mathematics, Thea-Leymann-Straße 9, 45127 Essen, Germany

5. 

University of Münster, Faculty of Mathematics and Computer Science, Einsteinstraße 62, 48149 Münster, Germany

Received  April 2020 Published  November 2020

The Feynman–Kac formula implies that every suitable classical solution of a semilinear Kolmogorov partial differential equation (PDE) is also a solution of a certain stochastic fixed point equation (SFPE). In this article we study such and related SFPEs. In particular, the main result of this work proves existence of unique solutions of certain SFPEs in a general setting. As an application of this main result we establish the existence of unique solutions of SFPEs associated with semilinear Kolmogorov PDEs with Lipschitz continuous nonlinearities even in the case where the associated semilinear Kolmogorov PDE does not possess a classical solution.

Citation: Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020320
References:
[1]

C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math., 28 (2020), 197-222. doi: 10.1515/jnma-2019-0074.  Google Scholar

[2]

C. Beck, M. Hutzenthaler and A. Jentzen, On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations, preprint, 54 pages, arXiv: 2004.03389. Google Scholar

[3]

C. BenderN. Schweizer and J. Zhuo, A primal-dual algorithm for BSDEs, Math. Finance, 27 (2017), 866-901.  doi: 10.1111/mafi.12100.  Google Scholar

[4]

C. Burgard and M. Kjaer, Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, The Journal of Credit Risk, 7 (2011), 1-19.  doi: 10.21314/JCR.2011.131.  Google Scholar

[5]

S. Crépey, R. Gerboud, Z. Grbac and N. Ngor, Counterparty risk and funding: the four wings of the TVA, Int. J. Theor. Appl. Finance, 16 (2013), 31 pages. doi: 10.1142/S0219024913500064.  Google Scholar

[6]

D. DuffieM. Schroder and C. Skiadas, Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Ann. Appl. Probab., 6 (1996), 1075-1090.  doi: 10.1214/aoap/1035463324.  Google Scholar

[7]

W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, preprint, 19 pages, arXiv: 1607.03295. Google Scholar

[8]

W. EM. HutzenthalerA. Jentzen and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1534-1571.  doi: 10.1007/s10915-018-00903-0.  Google Scholar

[9]

P. Grohs, F. Hornung, A. Jentzen and P. von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, preprint, 124 pages, arXiv: 1809.02362. Google Scholar

[10]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[11]

M. HairerM. Hutzenthaler and A. Jentzen, Loss of regularity for Kolmogorov equations, Ann. Probab., 43 (2015), 468-527.  doi: 10.1214/13-AOP838.  Google Scholar

[12]

P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint, 17 pages, arXiv: 1203.2369. Google Scholar

[13]

M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Accepted by Proc. Roy. Soc. London A, 30 pages, arXiv: 1807.01212. Google Scholar

[14]

M. Hutzenthaler, A. Jentzen and P. von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electronic Journal of Probability, 25 (2020), 73 pages, https://doi.org/10.1214/20-EJP423. doi: 10.1007/s13253-019-00378-y.  Google Scholar

[15]

M. Hutzenthaler and T. Kruse, Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58 (2020), 929-961.  doi: 10.1137/17M1157015.  Google Scholar

[16]

A. Kalinin, Markovian integral equations, Ann. Inst. Henri Poincaré Probab. Stat. 56, 1 (2020), 155–174. doi: 10.1214/19-AIHP958.  Google Scholar

[17]

O. Kallenberg, Foundations of Modern Probability, 2$^nd$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[18]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[19]

S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[20]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

W. Rudin, Real and Complex Analysis, 3$^rd$ edition, McGraw-Hill Book Co., New York, 1987.  Google Scholar

[23]

I. Segal, Non-linear semi-groups, Ann. of Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[24]

D. W. Stroock, Lectures on Topics in Stochastic Differential Equations, vol. 68 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1982, with notes by Satyajit Karmakar.  Google Scholar

[25]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

show all references

References:
[1]

C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math., 28 (2020), 197-222. doi: 10.1515/jnma-2019-0074.  Google Scholar

[2]

C. Beck, M. Hutzenthaler and A. Jentzen, On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations, preprint, 54 pages, arXiv: 2004.03389. Google Scholar

[3]

C. BenderN. Schweizer and J. Zhuo, A primal-dual algorithm for BSDEs, Math. Finance, 27 (2017), 866-901.  doi: 10.1111/mafi.12100.  Google Scholar

[4]

C. Burgard and M. Kjaer, Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, The Journal of Credit Risk, 7 (2011), 1-19.  doi: 10.21314/JCR.2011.131.  Google Scholar

[5]

S. Crépey, R. Gerboud, Z. Grbac and N. Ngor, Counterparty risk and funding: the four wings of the TVA, Int. J. Theor. Appl. Finance, 16 (2013), 31 pages. doi: 10.1142/S0219024913500064.  Google Scholar

[6]

D. DuffieM. Schroder and C. Skiadas, Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Ann. Appl. Probab., 6 (1996), 1075-1090.  doi: 10.1214/aoap/1035463324.  Google Scholar

[7]

W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, preprint, 19 pages, arXiv: 1607.03295. Google Scholar

[8]

W. EM. HutzenthalerA. Jentzen and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1534-1571.  doi: 10.1007/s10915-018-00903-0.  Google Scholar

[9]

P. Grohs, F. Hornung, A. Jentzen and P. von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, preprint, 124 pages, arXiv: 1809.02362. Google Scholar

[10]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[11]

M. HairerM. Hutzenthaler and A. Jentzen, Loss of regularity for Kolmogorov equations, Ann. Probab., 43 (2015), 468-527.  doi: 10.1214/13-AOP838.  Google Scholar

[12]

P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint, 17 pages, arXiv: 1203.2369. Google Scholar

[13]

M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Accepted by Proc. Roy. Soc. London A, 30 pages, arXiv: 1807.01212. Google Scholar

[14]

M. Hutzenthaler, A. Jentzen and P. von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electronic Journal of Probability, 25 (2020), 73 pages, https://doi.org/10.1214/20-EJP423. doi: 10.1007/s13253-019-00378-y.  Google Scholar

[15]

M. Hutzenthaler and T. Kruse, Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58 (2020), 929-961.  doi: 10.1137/17M1157015.  Google Scholar

[16]

A. Kalinin, Markovian integral equations, Ann. Inst. Henri Poincaré Probab. Stat. 56, 1 (2020), 155–174. doi: 10.1214/19-AIHP958.  Google Scholar

[17]

O. Kallenberg, Foundations of Modern Probability, 2$^nd$ edition, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4015-8.  Google Scholar

[18]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[19]

S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[20]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

W. Rudin, Real and Complex Analysis, 3$^rd$ edition, McGraw-Hill Book Co., New York, 1987.  Google Scholar

[23]

I. Segal, Non-linear semi-groups, Ann. of Math., 78 (1963), 339-364.  doi: 10.2307/1970347.  Google Scholar

[24]

D. W. Stroock, Lectures on Topics in Stochastic Differential Equations, vol. 68 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1982, with notes by Satyajit Karmakar.  Google Scholar

[25]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[4]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[5]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[6]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[18]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[19]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[20]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (148)
  • Cited by (0)

[Back to Top]