[1]
|
R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874-882.
doi: 10.1016/j.camwa.2008.01.017.
|
[2]
|
R. A. Adams, Sobolev Spaces, Ac. Press, New york, 1975.
|
[3]
|
L. Afraites, A. Atlas, F. Karami and D. Meskine, Some class of parabolic systems applied to image processing, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1671-1687.
doi: 10.3934/dcdsb.2016017.
|
[4]
|
L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. Ⅱ, SIAM J. Numer. Anal., 29 (1992), 845-866.
doi: 10.1137/0729052.
|
[5]
|
F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow, Differential Integral Equations, 14 (2001), 321-360.
|
[6]
|
N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Techn. Report of Univ. of Kansas, 14 (1955), 77-94.
|
[7]
|
G. Aubert and J.-F. Aujol, Modeling very oscillating signals. Application to image processing, Appl. Math. Optim., 51 (2005), 163-182.
doi: 10.1007/s00245-004-0812-z.
|
[8]
|
J.-F. Aujol, G. Aubert, L. Blanc-Féraud and A. Chambolle, Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision, 22 (2005), 71-88.
doi: 10.1007/s10851-005-4783-8.
|
[9]
|
A. Buades, B. Coll and J. M. Morel, A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2 (2005), 60-65.
|
[10]
|
A. Chambolle, R. A. DeVore, N.-Y. Lee and B. J. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), 319–335.
doi: 10.1109/83.661182.
|
[11]
|
E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, (1955).
|
[12]
|
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.
|
[13]
|
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, (2010).
doi: 10.1007/978-3-642-14574-2.
|
[14]
|
S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377-416.
doi: 10.4171/RMI/942.
|
[15]
|
D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009.
|
[16]
|
A. Elmahi and D. Meskine, Parabolic equations in Orlicz spaces, J. London Math. Soc. (2), 72 (2005), 410-428.
doi: 10.1112/S0024610705006630.
|
[17]
|
A. Elmoataz, X. Desquesnes and O. Lézoray, Non-Local Morphological PDEs and $p$-Laplacian Equation on Graphs With Applications in Image Processing and Machine Learning, IEEE Journal of Selected Topics in Signal Processing, 6 (2012), 764-779.
doi: 10.1109/JSTSP.2012.2216504.
|
[18]
|
E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8 (1959), 24-51.
|
[19]
|
J. B. Garnett, P. W. Jones, T. M. Le and L. A Vese, Modeling oscillatory components with the homogeneous spaces $B\dot MO^{-\alpha}$ and $\dot W{}^{-\alpha,p}$, Pure Appl. Math. Q., 7 (2011), 275-318.
doi: 10.4310/PAMQ.2011.v7.n2.a2.
|
[20]
|
J. B. Garnett, T. M. Le, Y. Meyer and L. A Vese, Image decompositions using bounded variation and generalized homogeneous Besov spaces, Appl. Comput. Harmon. Anal., 23 (2007), 25-56.
doi: 10.1016/j.acha.2007.01.005.
|
[21]
|
Y. Giga, M. Muszkieta and P. Rybka, A duality based approach to the minimizing total variation flow in the space $H^{-s}$, Jpn. J. Ind. Appl. Math., 36 (2019), 261-286.
doi: 10.1007/s13160-018-00340-4.
|
[22]
|
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358.
|
[23]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[24]
|
J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190 (1974), 163-205.
doi: 10.1090/S0002-9947-1974-0342854-2.
|
[25]
|
Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350.
doi: 10.1016/j.mcm.2010.12.031.
|
[26]
|
Y. Jin, J. Jost and G. Wang, A new nonlocal variational setting for image processing, Inverse Probl. Imaging, 9 (2015), 415-430.
doi: 10.3934/ipi.2015.9.415.
|
[27]
|
Y. Kim and L. A. Vese, Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability, Inverse Probl. Imaging, 3 (2009), 43-68.
doi: 10.3934/ipi.2009.3.43.
|
[28]
|
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), 1091-1115.
doi: 10.1137/050622249.
|
[29]
|
T. M. Le and L. A. Vese, Image decomposition using total variation and $ \rm{div} $($ \rm{BMO} $), Multiscale Model. Simul., 4 (2005), 390-423.
doi: 10.1137/040610052.
|
[30]
|
L. H. Lieu and L. A. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces, Appl. Math. Optim., 58 (2008), 167-193.
doi: 10.1007/s00245-008-9047-8.
|
[31]
|
X. Liu and L. Huang, A new nonlocal total variation regularization algorithm for image denoising, Math. Comput. Simulation, 97 (2014), 224-233.
doi: 10.1016/j.matcom.2013.10.001.
|
[32]
|
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, American Mathematical Society, Providence, RI, (2001).
doi: 10.1090/ulect/022.
|
[33]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, (1993).
|
[34]
|
S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Simul., 1 (2003), 349-370.
doi: 10.1137/S1540345902416247.
|
[35]
|
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205.
|
[36]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D., 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[37]
|
L. N. Slobodeckiĭ, Generalized Sobolev spaces and their application to boundary problems for partial differential equations, Leningrad. Gos. Ped. Inst. Učen. Zap., 197 (1958), 54-112.
|
[38]
|
N. N. Tarkhanov, The Analysis of Solutions of Elliptic Equations, Kluwer Academic Publishers Group, Dordrecht, (1997).
doi: 10.1007/978-94-015-8804-1.
|
[39]
|
L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572.
doi: 10.1023/A:1025384832106.
|
[40]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[41]
|
L. P. Yaroslavsky, Digital Picture Processing, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-642-81929-2.
|