• Previous Article
    Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions of Aoki-Shida-Shigesada model in bounded domains
April  2021, 26(4): 1931-1966. doi: 10.3934/dcdsb.2020326

Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation

Université de Bordeaux – Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33400 Talence, France

* Corresponding author: Pierre Magal, pierre.magal@u-bordeaux.fr

Received  August 2020 Published  November 2020

Fund Project: The research of the first author is supported by China Scholarship Council

In this work we describe a hyperbolic model with cell-cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (which we call "pressure") which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posed property of the associated Cauchy problem on the real line. Moreover we obtain a convergence result for bounded initial distributions which are positive and stay away from zero uniformly on the real line.

Citation: Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326
References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[16]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[17]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[18]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[19]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (116)
  • HTML views (210)
  • Cited by (0)

Other articles
by authors

[Back to Top]