• Previous Article
    Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions of Aoki-Shida-Shigesada model in bounded domains
April  2021, 26(4): 1931-1966. doi: 10.3934/dcdsb.2020326

Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation

Université de Bordeaux – Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33400 Talence, France

* Corresponding author: Pierre Magal, pierre.magal@u-bordeaux.fr

Received  August 2020 Published  November 2020

Fund Project: The research of the first author is supported by China Scholarship Council

In this work we describe a hyperbolic model with cell-cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (which we call "pressure") which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posed property of the associated Cauchy problem on the real line. Moreover we obtain a convergence result for bounded initial distributions which are positive and stay away from zero uniformly on the real line.

Citation: Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326
References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[1]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[2]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[3]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[4]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[5]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[6]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[7]

Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945

[8]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[9]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[10]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[11]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1241-1255. doi: 10.3934/dcdsb.2019218

[12]

Stephen Pankavich, Petronela Radu. Nonlinear instability of solutions in parabolic and hyperbolic diffusion. Evolution Equations & Control Theory, 2013, 2 (2) : 403-422. doi: 10.3934/eect.2013.2.403

[13]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[14]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[15]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[16]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[17]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[18]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[19]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[20]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (193)
  • HTML views (215)
  • Cited by (0)

Other articles
by authors

[Back to Top]