January  2021, 26(1): 81-105. doi: 10.3934/dcdsb.2020327

A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence

1. 

School of Mathematical Science, Beijing Normal University, Beijing l00875, China

2. 

Beijing Computational Science Research Center, Beijing 100193, China, Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author

Received  February 2020 Revised  September 2020 Published  January 2021 Early access  November 2020

Fund Project: The first author is supported in part by NSFC grant No.11871106, and Guangdong Natural Science Foundation through grant 2017B030311001, the third author is supported in part by NSFC grants No.11871092, U1930402

In this paper, we present and study $ C^1 $ Petrov-Galerkin and Gauss collocation methods with arbitrary polynomial degree $ k $ ($ \ge 3 $) for one-dimen\-sional elliptic equations. We prove that, the solution and its derivative approximations converge with rate $ 2k-2 $ at all grid points; and the solution approximation is superconvergent at all interior roots of a special Jacobi polynomial of degree $ k+1 $ in each element, the first-order derivative approximation is superconvergent at all interior $ k-2 $ Lobatto points, and the second-order derivative approximation is superconvergent at $ k-1 $ Gauss points, with an order of $ k+2 $, $ k+1 $, and $ k $, respectively. As a by-product, we prove that both the Petrov-Galerkin solution and the Gauss collocation solution are superconvergent towards a particular Jacobi projection of the exact solution in $ H^2 $, $ H^1 $, and $ L^2 $ norms. All theoretical findings are confirmed by numerical experiments.

Citation: Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327
References:
[1]

S. Adjerid and T. C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3331-3346.  doi: 10.1016/j.cma.2005.06.017.  Google Scholar

[2]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3113-3129.  doi: 10.1016/j.cma.2009.05.016.  Google Scholar

[3]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems,, Math. Comp., 80 (2011), 1335-1367.  doi: 10.1090/S0025-5718-2011-02460-9.  Google Scholar

[4]

I. Babu$ \rm\check{s} $kaT. StrouboulisC. S. Upadhyay and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, Numer. Meth. PDEs, 12 (1996), 347-392.  doi: 10.1002/num.1690120303.  Google Scholar

[5]

S. K. Bhal and P. Danumjaya, A Fourth-order orthogonal spline collocation solution to 1D-Helmholtz equation with discontinuity, J. Anal., 27 (2019), 377-390.  doi: 10.1007/s41478-018-0082-9.  Google Scholar

[6]

B. Bialecki, Superconvergence of the orthogonal spline collocation solution of Poisson's equation,, Numerical Methods for Partial Differential Equations, 15 (1999), 285-303.  doi: 10.1002/(SICI)1098-2426(199905)15:3<285::AID-NUM2>3.0.CO;2-1.  Google Scholar

[7]

J. H. Bramble and A. H. Schatz, High order local accuracy by averaging in the finite element method, Math. Comp., 31 (1997), 94-111.  doi: 10.1090/S0025-5718-1977-0431744-9.  Google Scholar

[8]

Z. Q. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735.  doi: 10.1007/BF01385651.  Google Scholar

[9]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of Discontinuous Galerkin method for nonlinear hyperbolic equations, SIAM. J. Numer. Anal., 56 (2018), 732-765.  doi: 10.1137/17M1128605.  Google Scholar

[10]

W. Cao and Z. Zhang, Superconvergence of Local Discontinuous Galerkin method for one-dimensional linear parabolic equations, Math. Comp., 85 (2016), 63-84.  doi: 10.1090/mcom/2975.  Google Scholar

[11]

W. CaoZ. Zhang and Q. Zou, Superconvergence of any order finite volume schemes for 1D general elliptic equations, J. Sci. Comput., 56 (2013), 566-590.  doi: 10.1007/s10915-013-9691-2.  Google Scholar

[12]

W. CaoZ. Zhang and Q. Zou, Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations, SIAM. J. Numer. Anal., 52 (2014), 2555-2573.  doi: 10.1137/130946873.  Google Scholar

[13]

W. CaoZ. Zhang and Q. Zou, Is $2k$-conjecture valid for finite volume methods?, SIAM. J. Numer. Anal., 53 (2015), 942-962.  doi: 10.1137/130936178.  Google Scholar

[14] C. Chen, Structure Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Hunan, China, 2001.   Google Scholar
[15]

C. Chen and S. Hu, The highest order superconvergence for bi-$k$ degree rectangular elements at nodes- a proof of $2k$-conjecture,, Math. Comp., 82 (2013), 1337-1355.  doi: 10.1090/S0025-5718-2012-02653-6.  Google Scholar

[16] C. Chen and Y. Huang, High Accuracy Theory of Finite Elements, Hunan Science and Technology Press, Hunan, China, 1995.   Google Scholar
[17]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal., 47 (2010), 4044-4072.  doi: 10.1137/090747701.  Google Scholar

[18]

S.-H. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Eng., 196 (2007), 3706-3712.  doi: 10.1016/j.cma.2006.10.025.  Google Scholar

[19] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second edition, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[20]

R. E. EwingR. D. Lazarov and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), 1015-1029.  doi: 10.1137/0728054.  Google Scholar

[21]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek and P. Neittaanm$\ddot{a}$ki, On superconvergence techniques, Acta Appl. Math., 9 (1987), 175-198.  doi: 10.1007/BF00047538.  Google Scholar

[22]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek, P. Neittaanm$\ddot{a}$ki and R. Stenberg (Eds.), Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series Vol. 196, Marcel Dekker, Inc., New York, 1997. Google Scholar

[23] Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements, Hebei University Press, P.R. China, 1996.   Google Scholar
[24]

A. H. SchatzI. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes which are symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), 505-521.  doi: 10.1137/0733027.  Google Scholar

[25]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[26]

V. Thomée, High order local approximation to derivatives in the finite element method, Math. Comp., 31 (1997), 652-660.  doi: 10.1090/S0025-5718-1977-0438664-4.  Google Scholar

[27]

L. B. Wahlbin, Superconvergence In Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605. Spring, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[28]

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Math. Comp., 79 (2010), 35-45.  doi: 10.1090/S0025-5718-09-02297-2.  Google Scholar

[29]

J. Xu and Q. Zou, Analysis of linear and quadratic simplitical finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469-492.  doi: 10.1007/s00211-008-0189-z.  Google Scholar

[30]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[31]

Z. Zhang, Superconvergence points of polynomial spectral interpolation,, SIAM J. Numer. Anal., 50 (2012), 2966-2985.  doi: 10.1137/120861291.  Google Scholar

[32]

Z. Zhang, Superconvergence of a Chebyshev spectral collocation method, J. Sci. Comput., 34 (2008), 237-246.  doi: 10.1007/s10915-007-9163-7.  Google Scholar

[33] Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method, Hunan Science and Technology Press, Hunan, China, 1989.   Google Scholar

show all references

References:
[1]

S. Adjerid and T. C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3331-3346.  doi: 10.1016/j.cma.2005.06.017.  Google Scholar

[2]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3113-3129.  doi: 10.1016/j.cma.2009.05.016.  Google Scholar

[3]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems,, Math. Comp., 80 (2011), 1335-1367.  doi: 10.1090/S0025-5718-2011-02460-9.  Google Scholar

[4]

I. Babu$ \rm\check{s} $kaT. StrouboulisC. S. Upadhyay and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, Numer. Meth. PDEs, 12 (1996), 347-392.  doi: 10.1002/num.1690120303.  Google Scholar

[5]

S. K. Bhal and P. Danumjaya, A Fourth-order orthogonal spline collocation solution to 1D-Helmholtz equation with discontinuity, J. Anal., 27 (2019), 377-390.  doi: 10.1007/s41478-018-0082-9.  Google Scholar

[6]

B. Bialecki, Superconvergence of the orthogonal spline collocation solution of Poisson's equation,, Numerical Methods for Partial Differential Equations, 15 (1999), 285-303.  doi: 10.1002/(SICI)1098-2426(199905)15:3<285::AID-NUM2>3.0.CO;2-1.  Google Scholar

[7]

J. H. Bramble and A. H. Schatz, High order local accuracy by averaging in the finite element method, Math. Comp., 31 (1997), 94-111.  doi: 10.1090/S0025-5718-1977-0431744-9.  Google Scholar

[8]

Z. Q. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735.  doi: 10.1007/BF01385651.  Google Scholar

[9]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of Discontinuous Galerkin method for nonlinear hyperbolic equations, SIAM. J. Numer. Anal., 56 (2018), 732-765.  doi: 10.1137/17M1128605.  Google Scholar

[10]

W. Cao and Z. Zhang, Superconvergence of Local Discontinuous Galerkin method for one-dimensional linear parabolic equations, Math. Comp., 85 (2016), 63-84.  doi: 10.1090/mcom/2975.  Google Scholar

[11]

W. CaoZ. Zhang and Q. Zou, Superconvergence of any order finite volume schemes for 1D general elliptic equations, J. Sci. Comput., 56 (2013), 566-590.  doi: 10.1007/s10915-013-9691-2.  Google Scholar

[12]

W. CaoZ. Zhang and Q. Zou, Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations, SIAM. J. Numer. Anal., 52 (2014), 2555-2573.  doi: 10.1137/130946873.  Google Scholar

[13]

W. CaoZ. Zhang and Q. Zou, Is $2k$-conjecture valid for finite volume methods?, SIAM. J. Numer. Anal., 53 (2015), 942-962.  doi: 10.1137/130936178.  Google Scholar

[14] C. Chen, Structure Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Hunan, China, 2001.   Google Scholar
[15]

C. Chen and S. Hu, The highest order superconvergence for bi-$k$ degree rectangular elements at nodes- a proof of $2k$-conjecture,, Math. Comp., 82 (2013), 1337-1355.  doi: 10.1090/S0025-5718-2012-02653-6.  Google Scholar

[16] C. Chen and Y. Huang, High Accuracy Theory of Finite Elements, Hunan Science and Technology Press, Hunan, China, 1995.   Google Scholar
[17]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal., 47 (2010), 4044-4072.  doi: 10.1137/090747701.  Google Scholar

[18]

S.-H. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Eng., 196 (2007), 3706-3712.  doi: 10.1016/j.cma.2006.10.025.  Google Scholar

[19] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second edition, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[20]

R. E. EwingR. D. Lazarov and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), 1015-1029.  doi: 10.1137/0728054.  Google Scholar

[21]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek and P. Neittaanm$\ddot{a}$ki, On superconvergence techniques, Acta Appl. Math., 9 (1987), 175-198.  doi: 10.1007/BF00047538.  Google Scholar

[22]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek, P. Neittaanm$\ddot{a}$ki and R. Stenberg (Eds.), Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series Vol. 196, Marcel Dekker, Inc., New York, 1997. Google Scholar

[23] Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements, Hebei University Press, P.R. China, 1996.   Google Scholar
[24]

A. H. SchatzI. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes which are symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), 505-521.  doi: 10.1137/0733027.  Google Scholar

[25]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[26]

V. Thomée, High order local approximation to derivatives in the finite element method, Math. Comp., 31 (1997), 652-660.  doi: 10.1090/S0025-5718-1977-0438664-4.  Google Scholar

[27]

L. B. Wahlbin, Superconvergence In Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605. Spring, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[28]

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Math. Comp., 79 (2010), 35-45.  doi: 10.1090/S0025-5718-09-02297-2.  Google Scholar

[29]

J. Xu and Q. Zou, Analysis of linear and quadratic simplitical finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469-492.  doi: 10.1007/s00211-008-0189-z.  Google Scholar

[30]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[31]

Z. Zhang, Superconvergence points of polynomial spectral interpolation,, SIAM J. Numer. Anal., 50 (2012), 2966-2985.  doi: 10.1137/120861291.  Google Scholar

[32]

Z. Zhang, Superconvergence of a Chebyshev spectral collocation method, J. Sci. Comput., 34 (2008), 237-246.  doi: 10.1007/s10915-007-9163-7.  Google Scholar

[33] Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method, Hunan Science and Technology Press, Hunan, China, 1989.   Google Scholar
Table 1.  Errors, corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, $ \alpha = \beta = \gamma = 1 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
2 8.03e-04 - 6.11e-03 - - - 7.59e-03 - 1.31e-01 -
4 7.02e-05 3.49 4.92e-04 3.61 - - 5.61e-04 3.73 1.66e-02 2.98
3 8 4.59e-06 3.95 3.02e-05 4.04 - - 3.73e-05 3.92 2.18e-03 2.93
16 2.91e-07 4.04 1.90e-06 4.05 - - 2.66e-06 3.87 2.67e-04 3.03
32 1.80e-08 4.00 1.18e-07 3.99 - - 1.77e-07 3.90 3.38e-05 2.98
2 2.88e-05 - 2.23e-05 - 7.54e-05 - 8.72e-04 - 1.30e-02 -
4 4.25e-07 6.10 2.47e-07 6.51 1.36e-06 5.81 2.44e-05 5.17 8.88e-04 3.88
4 8 6.53e-09 6.21 5.38e-09 5.69 2.14e-08 6.17 7.91e-07 5.10 5.47e-05 4.02
16 1.04e-10 5.96 1.04e-10 5.67 3.45e-10 5.94 2.64e-08 4.89 3.73e-06 3.87
32 1.62e-12 6.00 1.84e-12 5.83 5.50e-12 5.97 8.62e-10 4.94 2.30e-07 4.02
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
2 8.03e-04 - 6.11e-03 - - - 7.59e-03 - 1.31e-01 -
4 7.02e-05 3.49 4.92e-04 3.61 - - 5.61e-04 3.73 1.66e-02 2.98
3 8 4.59e-06 3.95 3.02e-05 4.04 - - 3.73e-05 3.92 2.18e-03 2.93
16 2.91e-07 4.04 1.90e-06 4.05 - - 2.66e-06 3.87 2.67e-04 3.03
32 1.80e-08 4.00 1.18e-07 3.99 - - 1.77e-07 3.90 3.38e-05 2.98
2 2.88e-05 - 2.23e-05 - 7.54e-05 - 8.72e-04 - 1.30e-02 -
4 4.25e-07 6.10 2.47e-07 6.51 1.36e-06 5.81 2.44e-05 5.17 8.88e-04 3.88
4 8 6.53e-09 6.21 5.38e-09 5.69 2.14e-08 6.17 7.91e-07 5.10 5.47e-05 4.02
16 1.04e-10 5.96 1.04e-10 5.67 3.45e-10 5.94 2.64e-08 4.89 3.73e-06 3.87
32 1.62e-12 6.00 1.84e-12 5.83 5.50e-12 5.97 8.62e-10 4.94 2.30e-07 4.02
Table 2.  Errors, corresponding convergence rates for $ C^1 $ Gauss collocation method, $ \alpha = \beta = \gamma = 1 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u^{''}} $
$ k $ $ N $ error order error order error order error order error order
2 5.25e-03 - 1.36e-02 - - - 1.44e-02 - 8.32e-02 -
4 2.88e-04 4.13 7.26e-04 4.18 - - 8.35e-04 4.06 1.16e-02 2.84
3 8 1.82e-05 4.07 4.66e-05 4.05 - - 5.89e-05 3.91 1.61e-03 2.85
16 1.16e-06 3.94 2.91e-06 3.96 - - 4.01e-06 3.84 1.91e-04 3.08
32 7.18e-08 4.01 1.81e-07 4.01 - - 2.65e-07 3.92 2.45e-05 2.96
2 1.32e-05 - 1.04e-04 - 1.98e-04 - 9.54e-04 - 7.12e-03 -
4 2.92e-07 5.48 1.79e-06 5.85 3.14e-06 5.96 3.32e-05 4.83 5.77e-04 3.63
4 8 4.62e-09 5.97 2.80e-08 5.99 5.09e-08 5.94 1.05e-06 4.98 3.89e-05 3.89
16 7.56e-11 6.06 4.40e-10 6.12 8.61e-10 6.01 3.40e-08 5.04 2.46e-06 3.98
32 1.18e-12 6.08 6.87e-12 6.08 1.28e-11 6.15 1.05e-09 5.08 1.52e-07 4.02
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u^{''}} $
$ k $ $ N $ error order error order error order error order error order
2 5.25e-03 - 1.36e-02 - - - 1.44e-02 - 8.32e-02 -
4 2.88e-04 4.13 7.26e-04 4.18 - - 8.35e-04 4.06 1.16e-02 2.84
3 8 1.82e-05 4.07 4.66e-05 4.05 - - 5.89e-05 3.91 1.61e-03 2.85
16 1.16e-06 3.94 2.91e-06 3.96 - - 4.01e-06 3.84 1.91e-04 3.08
32 7.18e-08 4.01 1.81e-07 4.01 - - 2.65e-07 3.92 2.45e-05 2.96
2 1.32e-05 - 1.04e-04 - 1.98e-04 - 9.54e-04 - 7.12e-03 -
4 2.92e-07 5.48 1.79e-06 5.85 3.14e-06 5.96 3.32e-05 4.83 5.77e-04 3.63
4 8 4.62e-09 5.97 2.80e-08 5.99 5.09e-08 5.94 1.05e-06 4.98 3.89e-05 3.89
16 7.56e-11 6.06 4.40e-10 6.12 8.61e-10 6.01 3.40e-08 5.04 2.46e-06 3.98
32 1.18e-12 6.08 6.87e-12 6.08 1.28e-11 6.15 1.05e-09 5.08 1.52e-07 4.02
Table 3.  $ \|u_h-u_I\|_2 $ and the corresponding convergence rates, constant coefficients.
$ \|u_h-u_I\|_2 $
$ C^1 $ Petrov-Galerkin $ C^1 $ Gauss collocation
$ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $ $ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $
$ k $ $ N $ error order error order error order error order
2 3.93e-02 - 5.57e-03 - 1.12e-01 - 8.32e-02 -
4 5.15e-03 2.91 3.59e-04 3.94 1.36e-02 3.00 1.07e-02 2.93
3 8 6.47e-04 3.00 2.23e-05 3.99 1.72e-03 3.04 1.34e-03 3.03
16 8.12e-05 3.04 1.40e-06 4.02 2.17e-04 2.96 1.70e-04 2.96
32 1.01e-05 2.99 8.75e-08 4.01 2.70e-05 3.01 2.12e-05 3.03
2 3.47e-03 - 2.23e-04 - 9.86e-03 - 8.27e-03 -
4 2.24e-04 3.97 7.13e-06 4.99 6.63e-04 3.88 5.20e-04 4.02
4 8 1.40e-05 4.12 2.30e-07 5.03 4.14e-05 4.00 3.30e-05 3.94
16 8.80e-07 3.98 7.07e-09 5.01 2.59e-06 4.08 2.07e-06 4.05
32 5.50e-08 4.00 2.22e-10 5.02 1.62e-07 4.05 1.30e-07 4.04
$ \|u_h-u_I\|_2 $
$ C^1 $ Petrov-Galerkin $ C^1 $ Gauss collocation
$ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $ $ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $
$ k $ $ N $ error order error order error order error order
2 3.93e-02 - 5.57e-03 - 1.12e-01 - 8.32e-02 -
4 5.15e-03 2.91 3.59e-04 3.94 1.36e-02 3.00 1.07e-02 2.93
3 8 6.47e-04 3.00 2.23e-05 3.99 1.72e-03 3.04 1.34e-03 3.03
16 8.12e-05 3.04 1.40e-06 4.02 2.17e-04 2.96 1.70e-04 2.96
32 1.01e-05 2.99 8.75e-08 4.01 2.70e-05 3.01 2.12e-05 3.03
2 3.47e-03 - 2.23e-04 - 9.86e-03 - 8.27e-03 -
4 2.24e-04 3.97 7.13e-06 4.99 6.63e-04 3.88 5.20e-04 4.02
4 8 1.40e-05 4.12 2.30e-07 5.03 4.14e-05 4.00 3.30e-05 3.94
16 8.80e-07 3.98 7.07e-09 5.01 2.59e-06 4.08 2.07e-06 4.05
32 5.50e-08 4.00 2.22e-10 5.02 1.62e-07 4.05 1.30e-07 4.04
Table 4.  Errors and corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, variable coefficients, $ k = 3 $.
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 4.24e-04 - 4.42e-04 - 1.45e-02 - 4.98e-01 -
8 2.75e-05 3.94 2.94e-05 3.91 1.38e-03 3.39 8.75e-02 2.51
3 16 1.75e-06 3.97 1.87e-06 3.98 1.03e-04 3.74 1.25e-02 2.81
32 1.10e-07 4.00 1.17e-07 3.99 6.85e-06 3.91 1.63e-03 2.94
64 6.86e-09 4.00 7.34e-09 4.00 4.36e-07 3.97 2.05e-04 2.99
Case 2
4 3.39e-04 - 3.42e-04 - 1.37e-02 - 4.88e-01 -
8 2.25e-05 3.92 2.69e-05 3.67 1.31e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.96 1.88e-06 3.84 9.74e-05 3.74 1.22e-02 2.81
32 9.03e-08 4.00 1.23e-07 3.93 6.46e-06 3.91 1.58e-03 2.95
64 5.64e-09 4.00 7.87e-09 3.97 4.11e-07 3.98 2.00e-04 2.99
Case 3
4 3.36e-04 - 3.53e-04 - 1.37e-02 - 4.88e-01 -
8 2.26e-05 3.89 2.82e-05 3.65 1.30e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.97 1.97e-06 3.84 9.72e-05 3.75 1.22e-02 2.81
32 9.05e-08 4.00 1.29e-07 3.93 6.45e-06 3.91 1.59e-03 2.95
64 5.66e-09 4.00 8.26e-09 3.97 4.09e-07 3.98 2.00e-04 2.99
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 4.24e-04 - 4.42e-04 - 1.45e-02 - 4.98e-01 -
8 2.75e-05 3.94 2.94e-05 3.91 1.38e-03 3.39 8.75e-02 2.51
3 16 1.75e-06 3.97 1.87e-06 3.98 1.03e-04 3.74 1.25e-02 2.81
32 1.10e-07 4.00 1.17e-07 3.99 6.85e-06 3.91 1.63e-03 2.94
64 6.86e-09 4.00 7.34e-09 4.00 4.36e-07 3.97 2.05e-04 2.99
Case 2
4 3.39e-04 - 3.42e-04 - 1.37e-02 - 4.88e-01 -
8 2.25e-05 3.92 2.69e-05 3.67 1.31e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.96 1.88e-06 3.84 9.74e-05 3.74 1.22e-02 2.81
32 9.03e-08 4.00 1.23e-07 3.93 6.46e-06 3.91 1.58e-03 2.95
64 5.64e-09 4.00 7.87e-09 3.97 4.11e-07 3.98 2.00e-04 2.99
Case 3
4 3.36e-04 - 3.53e-04 - 1.37e-02 - 4.88e-01 -
8 2.26e-05 3.89 2.82e-05 3.65 1.30e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.97 1.97e-06 3.84 9.72e-05 3.75 1.22e-02 2.81
32 9.05e-08 4.00 1.29e-07 3.93 6.45e-06 3.91 1.59e-03 2.95
64 5.66e-09 4.00 8.26e-09 3.97 4.09e-07 3.98 2.00e-04 2.99
Table 5.  Errors and corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, variable coefficients, $ k = 4 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 2.56e-06 - 1.71e-06 - 4.10e-05 - 1.19e-03 - 6.21e-02 -
8 4.06e-08 5.98 3.46e-08 5.62 8.78e-07 5.55 4.83e-05 4.63 4.91e-03 3.66
4 16 6.25e-10 6.02 6.31e-10 5.78 1.35e-08 6.03 1.38e-06 5.13 2.90e-04 4.08
32 1.05e-11 5.89 1.03e-11 5.94 2.25e-10 5.90 4.78e-08 4.85 1.94e-05 3.90
64 1.63e-13 6.01 1.65e-13 5.96 4.02e-12 5.81 1.52e-09 4.98 1.24e-06 3.97
Case 2
4 1.25e-06 - 8.07e-07 - 3.91e-05 - 1.16e-03 - 6.07e-02 -
8 2.01e-08 5.96 2.10e-08 5.27 8.31e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 3.10e-10 6.02 3.99e-10 5.71 1.26e-08 6.05 1.33e-06 5.12 2.84e-04 4.08
32 5.12e-12 5.92 6.70e-12 5.90 2.13e-10 5.89 4.59e-08 4.86 1.89e-05 3.90
64 8.02e-14 6.00 1.05e-13 6.00 3.89e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Case 3
4 9.26e-07 - 5.75e-07 - 3.93e-05 - 1.16e-03 - 6.07e-02 -
8 1.48e-08 5.96 1.54e-08 5.22 8.33e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 2.29e-10 6.02 2.95e-10 5.71 1.26e-08 6.05 1.33e-06 5.11 2.84e-04 4.08
32 3.81e-12 5.91 4.94e-12 5.90 2.13e-10 5.89 4.58e-08 4.86 1.89e-05 3.90
64 5.74e-14 6.05 9.17e-14 5.75 3.91e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 2.56e-06 - 1.71e-06 - 4.10e-05 - 1.19e-03 - 6.21e-02 -
8 4.06e-08 5.98 3.46e-08 5.62 8.78e-07 5.55 4.83e-05 4.63 4.91e-03 3.66
4 16 6.25e-10 6.02 6.31e-10 5.78 1.35e-08 6.03 1.38e-06 5.13 2.90e-04 4.08
32 1.05e-11 5.89 1.03e-11 5.94 2.25e-10 5.90 4.78e-08 4.85 1.94e-05 3.90
64 1.63e-13 6.01 1.65e-13 5.96 4.02e-12 5.81 1.52e-09 4.98 1.24e-06 3.97
Case 2
4 1.25e-06 - 8.07e-07 - 3.91e-05 - 1.16e-03 - 6.07e-02 -
8 2.01e-08 5.96 2.10e-08 5.27 8.31e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 3.10e-10 6.02 3.99e-10 5.71 1.26e-08 6.05 1.33e-06 5.12 2.84e-04 4.08
32 5.12e-12 5.92 6.70e-12 5.90 2.13e-10 5.89 4.59e-08 4.86 1.89e-05 3.90
64 8.02e-14 6.00 1.05e-13 6.00 3.89e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Case 3
4 9.26e-07 - 5.75e-07 - 3.93e-05 - 1.16e-03 - 6.07e-02 -
8 1.48e-08 5.96 1.54e-08 5.22 8.33e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 2.29e-10 6.02 2.95e-10 5.71 1.26e-08 6.05 1.33e-06 5.11 2.84e-04 4.08
32 3.81e-12 5.91 4.94e-12 5.90 2.13e-10 5.89 4.58e-08 4.86 1.89e-05 3.90
64 5.74e-14 6.05 9.17e-14 5.75 3.91e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Table 6.  Errors and corresponding convergence rates for $ C^1 $ Gauss collocation method, variable coefficients, $ k = 3 $.
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 2.12e-03 - 3.30e-03 - 1.29e-02 - 7.15e-02 -
8 1.43e-04 3.89 5.10e-04 2.69 1.33e-03 3.28 1.35e-02 2.41
3 16 8.87e-06 4.01 4.71e-05 3.44 1.01e-04 3.72 2.03e-03 2.73
32 5.49e-07 4.02 3.42e-06 3.78 6.67e-06 3.92 2.76e-04 2.88
64 3.42e-08 4.00 2.24e-07 3.93 4.22e-07 3.98 3.59e-05 2.94
Case 2
4 2.30e-03 - 2.97e-03 - 1.42e-02 - 9.18e-02 -
8 1.56e-04 3.89 5.01e-04 2.57 1.45e-03 3.30 1.71e-02 2.43
3 16 9.62e-06 4.02 4.72e-05 3.41 1.09e-04 3.72 2.55e-03 2.74
32 5.95e-07 4.01 3.45e-06 3.77 7.25e-06 3.92 3.46e-04 2.88
64 3.71e-08 4.00 2.26e-07 3.93 4.59e-07 3.98 4.49e-05 2.94
Case 3
4 2.37e-03 - 2.84e-03 - 1.45e-02 - 9.13e-02 -
8 1.59e-04 3.89 4.85e-04 2.55 1.47e-03 3.30 1.70e-02 2.43
3 16 9.82e-06 4.02 4.60e-05 3.40 1.11e-04 3.73 2.54e-03 2.74
32 6.08e-07 4.01 3.37e-06 3.77 7.33e-06 3.92 3.45e-04 2.88
64 3.79e-08 4.00 2.21e-07 3.93 4.64e-07 3.98 4.49e-05 2.94
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 2.12e-03 - 3.30e-03 - 1.29e-02 - 7.15e-02 -
8 1.43e-04 3.89 5.10e-04 2.69 1.33e-03 3.28 1.35e-02 2.41
3 16 8.87e-06 4.01 4.71e-05 3.44 1.01e-04 3.72 2.03e-03 2.73
32 5.49e-07 4.02 3.42e-06 3.78 6.67e-06 3.92 2.76e-04 2.88
64 3.42e-08 4.00 2.24e-07 3.93 4.22e-07 3.98 3.59e-05 2.94
Case 2
4 2.30e-03 - 2.97e-03 - 1.42e-02 - 9.18e-02 -
8 1.56e-04 3.89 5.01e-04 2.57 1.45e-03 3.30 1.71e-02 2.43
3 16 9.62e-06 4.02 4.72e-05 3.41 1.09e-04 3.72 2.55e-03 2.74
32 5.95e-07 4.01 3.45e-06 3.77 7.25e-06 3.92 3.46e-04 2.88
64 3.71e-08 4.00 2.26e-07 3.93 4.59e-07 3.98 4.49e-05 2.94
Case 3
4 2.37e-03 - 2.84e-03 - 1.45e-02 - 9.13e-02 -
8 1.59e-04 3.89 4.85e-04 2.55 1.47e-03 3.30 1.70e-02 2.43
3 16 9.82e-06 4.02 4.60e-05 3.40 1.11e-04 3.73 2.54e-03 2.74
32 6.08e-07 4.01 3.37e-06 3.77 7.33e-06 3.92 3.45e-04 2.88
64 3.79e-08 4.00 2.21e-07 3.93 4.64e-07 3.98 4.49e-05 2.94
Table 7.  Errors and corresponding convergence rates for $ C^1 $ Gauss collocation method, variable coefficients, $ k = 4 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 1.45e-05 - 1.16e-04 - 8.66e-05 - 1.00e-03 - 8.32e-03 -
8 4.69e-07 4.95 3.01e-06 5.27 1.53e-06 5.82 3.87e-05 4.69 7.68e-04 3.44
4 16 1.25e-08 5.23 4.84e-08 5.96 1.64e-08 6.55 1.14e-06 5.09 5.70e-05 3.75
32 2.23e-10 5.81 7.53e-10 6.01 4.01e-10 5.35 3.76e-08 4.92 3.73e-06 3.94
64 3.61e-12 5.95 1.18e-11 6.00 7.73e-12 5.70 1.18e-09 4.99 2.34e-07 4.00
Case 2
4 1.60e-05 - 1.15e-04 - 9.17e-05 - 1.09e-03 - 1.06e-02 -
8 4.82e-07 5.05 3.09e-06 5.22 1.63e-06 5.81 4.18e-05 4.70 9.85e-04 3.42
4 16 1.31e-08 5.20 5.06e-08 5.93 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.35e-10 5.80 7.92e-10 6.00 4.08e-10 5.45 4.10e-08 4.93 4.68e-06 3.94
64 3.80e-12 5.95 1.24e-11 6.00 7.92e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Case 3
4 1.61e-05 - 1.15e-04 - 9.18e-05 - 1.09e-03 - 1.05e-02 -
8 4.84e-07 5.06 3.08e-06 5.22 1.63e-06 5.82 4.18e-05 4.70 9.86e-04 3.42
4 16 1.32e-08 5.20 5.07e-08 5.92 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.37e-10 5.80 7.96e-10 5.99 4.06e-10 5.45 4.10e-08 4.93 4.68e-06 3.95
64 3.84e-12 5.95 1.25e-11 6.00 7.89e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 1.45e-05 - 1.16e-04 - 8.66e-05 - 1.00e-03 - 8.32e-03 -
8 4.69e-07 4.95 3.01e-06 5.27 1.53e-06 5.82 3.87e-05 4.69 7.68e-04 3.44
4 16 1.25e-08 5.23 4.84e-08 5.96 1.64e-08 6.55 1.14e-06 5.09 5.70e-05 3.75
32 2.23e-10 5.81 7.53e-10 6.01 4.01e-10 5.35 3.76e-08 4.92 3.73e-06 3.94
64 3.61e-12 5.95 1.18e-11 6.00 7.73e-12 5.70 1.18e-09 4.99 2.34e-07 4.00
Case 2
4 1.60e-05 - 1.15e-04 - 9.17e-05 - 1.09e-03 - 1.06e-02 -
8 4.82e-07 5.05 3.09e-06 5.22 1.63e-06 5.81 4.18e-05 4.70 9.85e-04 3.42
4 16 1.31e-08 5.20 5.06e-08 5.93 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.35e-10 5.80 7.92e-10 6.00 4.08e-10 5.45 4.10e-08 4.93 4.68e-06 3.94
64 3.80e-12 5.95 1.24e-11 6.00 7.92e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Case 3
4 1.61e-05 - 1.15e-04 - 9.18e-05 - 1.09e-03 - 1.05e-02 -
8 4.84e-07 5.06 3.08e-06 5.22 1.63e-06 5.82 4.18e-05 4.70 9.86e-04 3.42
4 16 1.32e-08 5.20 5.07e-08 5.92 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.37e-10 5.80 7.96e-10 5.99 4.06e-10 5.45 4.10e-08 4.93 4.68e-06 3.95
64 3.84e-12 5.95 1.25e-11 6.00 7.89e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Table 8.  $ \|u_h-u_I\|_2 $ and corresponding convergence rates, variable coefficients, $ k = 3 $.
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 2.35e-02 - 1.89e-02 - 1.89e-02 -
8 3.46e-03 2.77 2.82e-03 2.75 2.82e-03 2.75
$ C^1 $ Petrov-Galerkin 3 16 4.49e-04 2.94 3.67e-04 2.94 3.67e-04 2.94
32 5.66e-05 2.99 4.64e-05 2.99 4.64e-05 2.99
64 7.10e-06 3.00 5.81e-06 3.00 5.81e-06 3.00
4 1.86e-01 - 1.93e-01 - 1.93e-01 -
8 2.65e-02 2.81 2.75e-02 2.81 2.75e-02 2.81
$ C^1 $ Gauss collocation 3 16 3.37e-03 2.97 3.51e-03 2.97 3.51e-03 2.97
32 4.22e-04 3.00 4.39e-04 3.00 4.39e-04 3.00
64 5.27e-05 3.00 5.49e-05 3.00 5.49e-05 3.00
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 2.35e-02 - 1.89e-02 - 1.89e-02 -
8 3.46e-03 2.77 2.82e-03 2.75 2.82e-03 2.75
$ C^1 $ Petrov-Galerkin 3 16 4.49e-04 2.94 3.67e-04 2.94 3.67e-04 2.94
32 5.66e-05 2.99 4.64e-05 2.99 4.64e-05 2.99
64 7.10e-06 3.00 5.81e-06 3.00 5.81e-06 3.00
4 1.86e-01 - 1.93e-01 - 1.93e-01 -
8 2.65e-02 2.81 2.75e-02 2.81 2.75e-02 2.81
$ C^1 $ Gauss collocation 3 16 3.37e-03 2.97 3.51e-03 2.97 3.51e-03 2.97
32 4.22e-04 3.00 4.39e-04 3.00 4.39e-04 3.00
64 5.27e-05 3.00 5.49e-05 3.00 5.49e-05 3.00
Table 9.  $ \|u_h-u_I\|_2 $ and corresponding convergence rates, variable coefficients, $ k = 4 $.
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 5.03e-03 - 4.48e-03 - 4.48e-03 -
8 3.53e-04 3.83 3.17e-04 3.82 3.17e-04 3.82
$ C^1 $ Petrov-Galerkin 4 16 2.24e-05 3.98 2.01e-05 3.98 2.01e-05 3.98
32 1.40e-06 4.00 1.26e-06 4.00 1.26e-06 4.00
64 8.75e-08 4.00 7.86e-08 4.00 7.86e-08 4.00
4 2.09e-02 - 2.18e-02 - 2.18e-02 -
8 1.32e-03 3.99 1.38e-03 3.99 1.38e-03 3.99
$ C^1 $ Gauss collocation 4 16 7.74e-05 4.09 8.12e-05 4.08 8.12e-05 4.08
32 4.86e-06 3.99 5.09e-06 4.00 5.09e-06 4.00
64 3.06e-07 3.99 3.20e-07 3.99 3.20e-07 3.99
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 5.03e-03 - 4.48e-03 - 4.48e-03 -
8 3.53e-04 3.83 3.17e-04 3.82 3.17e-04 3.82
$ C^1 $ Petrov-Galerkin 4 16 2.24e-05 3.98 2.01e-05 3.98 2.01e-05 3.98
32 1.40e-06 4.00 1.26e-06 4.00 1.26e-06 4.00
64 8.75e-08 4.00 7.86e-08 4.00 7.86e-08 4.00
4 2.09e-02 - 2.18e-02 - 2.18e-02 -
8 1.32e-03 3.99 1.38e-03 3.99 1.38e-03 3.99
$ C^1 $ Gauss collocation 4 16 7.74e-05 4.09 8.12e-05 4.08 8.12e-05 4.08
32 4.86e-06 3.99 5.09e-06 4.00 5.09e-06 4.00
64 3.06e-07 3.99 3.20e-07 3.99 3.20e-07 3.99
[1]

Jean Dolbeault, Marta García-Huidobro, Rául Manásevich. Interpolation inequalities in $ \mathrm W^{1,p}( {\mathbb S}^1) $ and carré du champ methods. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 375-394. doi: 10.3934/dcds.2020014

[2]

Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

[3]

Yi Peng, Jinbiao Wu. On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020124

[4]

Qiang Tu. A class of prescribed shifted Gauss curvature equations for horo-convex hypersurfaces in $ \mathbb{H}^{n+1} $. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021081

[5]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[6]

Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164

[7]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[8]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021, 4 (2) : 89-103. doi: 10.3934/mfc.2021005

[9]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020135

[10]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[11]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[12]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[13]

Cunsheng Ding, Chunming Tang. Infinite families of $ 3 $-designs from o-polynomials. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020082

[14]

Abdeladim El Akri, Lahcen Maniar. Uniform indirect boundary controllability of semi-discrete $ 1 $-$ d $ coupled wave equations. Mathematical Control & Related Fields, 2020, 10 (4) : 669-698. doi: 10.3934/mcrf.2020015

[15]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[16]

Sarah J. Hamilton, David Isaacson, Ville Kolehmainen, Peter A. Muller, Jussi Toivainen, Patrick F. Bray. 3D Electrical Impedance Tomography reconstructions from simulated electrode data using direct inversion $ \mathbf{t}^{\rm{{\textbf{exp}}}} $ and Calderón methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021032

[17]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081

[18]

Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2221-2252. doi: 10.3934/dcdss.2019143

[19]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[20]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (148)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]