doi: 10.3934/dcdsb.2020327

A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence

1. 

School of Mathematical Science, Beijing Normal University, Beijing l00875, China

2. 

Beijing Computational Science Research Center, Beijing 100193, China, Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author

Received  February 2020 Revised  September 2020 Published  November 2020

Fund Project: The first author is supported in part by NSFC grant No.11871106, and Guangdong Natural Science Foundation through grant 2017B030311001, the third author is supported in part by NSFC grants No.11871092, U1930402

In this paper, we present and study $ C^1 $ Petrov-Galerkin and Gauss collocation methods with arbitrary polynomial degree $ k $ ($ \ge 3 $) for one-dimen\-sional elliptic equations. We prove that, the solution and its derivative approximations converge with rate $ 2k-2 $ at all grid points; and the solution approximation is superconvergent at all interior roots of a special Jacobi polynomial of degree $ k+1 $ in each element, the first-order derivative approximation is superconvergent at all interior $ k-2 $ Lobatto points, and the second-order derivative approximation is superconvergent at $ k-1 $ Gauss points, with an order of $ k+2 $, $ k+1 $, and $ k $, respectively. As a by-product, we prove that both the Petrov-Galerkin solution and the Gauss collocation solution are superconvergent towards a particular Jacobi projection of the exact solution in $ H^2 $, $ H^1 $, and $ L^2 $ norms. All theoretical findings are confirmed by numerical experiments.

Citation: Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020327
References:
[1]

S. Adjerid and T. C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3331-3346.  doi: 10.1016/j.cma.2005.06.017.  Google Scholar

[2]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3113-3129.  doi: 10.1016/j.cma.2009.05.016.  Google Scholar

[3]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems,, Math. Comp., 80 (2011), 1335-1367.  doi: 10.1090/S0025-5718-2011-02460-9.  Google Scholar

[4]

I. Babu$ \rm\check{s} $kaT. StrouboulisC. S. Upadhyay and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, Numer. Meth. PDEs, 12 (1996), 347-392.  doi: 10.1002/num.1690120303.  Google Scholar

[5]

S. K. Bhal and P. Danumjaya, A Fourth-order orthogonal spline collocation solution to 1D-Helmholtz equation with discontinuity, J. Anal., 27 (2019), 377-390.  doi: 10.1007/s41478-018-0082-9.  Google Scholar

[6]

B. Bialecki, Superconvergence of the orthogonal spline collocation solution of Poisson's equation,, Numerical Methods for Partial Differential Equations, 15 (1999), 285-303.  doi: 10.1002/(SICI)1098-2426(199905)15:3<285::AID-NUM2>3.0.CO;2-1.  Google Scholar

[7]

J. H. Bramble and A. H. Schatz, High order local accuracy by averaging in the finite element method, Math. Comp., 31 (1997), 94-111.  doi: 10.1090/S0025-5718-1977-0431744-9.  Google Scholar

[8]

Z. Q. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735.  doi: 10.1007/BF01385651.  Google Scholar

[9]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of Discontinuous Galerkin method for nonlinear hyperbolic equations, SIAM. J. Numer. Anal., 56 (2018), 732-765.  doi: 10.1137/17M1128605.  Google Scholar

[10]

W. Cao and Z. Zhang, Superconvergence of Local Discontinuous Galerkin method for one-dimensional linear parabolic equations, Math. Comp., 85 (2016), 63-84.  doi: 10.1090/mcom/2975.  Google Scholar

[11]

W. CaoZ. Zhang and Q. Zou, Superconvergence of any order finite volume schemes for 1D general elliptic equations, J. Sci. Comput., 56 (2013), 566-590.  doi: 10.1007/s10915-013-9691-2.  Google Scholar

[12]

W. CaoZ. Zhang and Q. Zou, Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations, SIAM. J. Numer. Anal., 52 (2014), 2555-2573.  doi: 10.1137/130946873.  Google Scholar

[13]

W. CaoZ. Zhang and Q. Zou, Is $2k$-conjecture valid for finite volume methods?, SIAM. J. Numer. Anal., 53 (2015), 942-962.  doi: 10.1137/130936178.  Google Scholar

[14] C. Chen, Structure Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Hunan, China, 2001.   Google Scholar
[15]

C. Chen and S. Hu, The highest order superconvergence for bi-$k$ degree rectangular elements at nodes- a proof of $2k$-conjecture,, Math. Comp., 82 (2013), 1337-1355.  doi: 10.1090/S0025-5718-2012-02653-6.  Google Scholar

[16] C. Chen and Y. Huang, High Accuracy Theory of Finite Elements, Hunan Science and Technology Press, Hunan, China, 1995.   Google Scholar
[17]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal., 47 (2010), 4044-4072.  doi: 10.1137/090747701.  Google Scholar

[18]

S.-H. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Eng., 196 (2007), 3706-3712.  doi: 10.1016/j.cma.2006.10.025.  Google Scholar

[19] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second edition, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[20]

R. E. EwingR. D. Lazarov and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), 1015-1029.  doi: 10.1137/0728054.  Google Scholar

[21]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek and P. Neittaanm$\ddot{a}$ki, On superconvergence techniques, Acta Appl. Math., 9 (1987), 175-198.  doi: 10.1007/BF00047538.  Google Scholar

[22]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek, P. Neittaanm$\ddot{a}$ki and R. Stenberg (Eds.), Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series Vol. 196, Marcel Dekker, Inc., New York, 1997. Google Scholar

[23] Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements, Hebei University Press, P.R. China, 1996.   Google Scholar
[24]

A. H. SchatzI. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes which are symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), 505-521.  doi: 10.1137/0733027.  Google Scholar

[25]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[26]

V. Thomée, High order local approximation to derivatives in the finite element method, Math. Comp., 31 (1997), 652-660.  doi: 10.1090/S0025-5718-1977-0438664-4.  Google Scholar

[27]

L. B. Wahlbin, Superconvergence In Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605. Spring, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[28]

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Math. Comp., 79 (2010), 35-45.  doi: 10.1090/S0025-5718-09-02297-2.  Google Scholar

[29]

J. Xu and Q. Zou, Analysis of linear and quadratic simplitical finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469-492.  doi: 10.1007/s00211-008-0189-z.  Google Scholar

[30]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[31]

Z. Zhang, Superconvergence points of polynomial spectral interpolation,, SIAM J. Numer. Anal., 50 (2012), 2966-2985.  doi: 10.1137/120861291.  Google Scholar

[32]

Z. Zhang, Superconvergence of a Chebyshev spectral collocation method, J. Sci. Comput., 34 (2008), 237-246.  doi: 10.1007/s10915-007-9163-7.  Google Scholar

[33] Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method, Hunan Science and Technology Press, Hunan, China, 1989.   Google Scholar

show all references

References:
[1]

S. Adjerid and T. C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3331-3346.  doi: 10.1016/j.cma.2005.06.017.  Google Scholar

[2]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 3113-3129.  doi: 10.1016/j.cma.2009.05.016.  Google Scholar

[3]

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems,, Math. Comp., 80 (2011), 1335-1367.  doi: 10.1090/S0025-5718-2011-02460-9.  Google Scholar

[4]

I. Babu$ \rm\check{s} $kaT. StrouboulisC. S. Upadhyay and S. K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, Numer. Meth. PDEs, 12 (1996), 347-392.  doi: 10.1002/num.1690120303.  Google Scholar

[5]

S. K. Bhal and P. Danumjaya, A Fourth-order orthogonal spline collocation solution to 1D-Helmholtz equation with discontinuity, J. Anal., 27 (2019), 377-390.  doi: 10.1007/s41478-018-0082-9.  Google Scholar

[6]

B. Bialecki, Superconvergence of the orthogonal spline collocation solution of Poisson's equation,, Numerical Methods for Partial Differential Equations, 15 (1999), 285-303.  doi: 10.1002/(SICI)1098-2426(199905)15:3<285::AID-NUM2>3.0.CO;2-1.  Google Scholar

[7]

J. H. Bramble and A. H. Schatz, High order local accuracy by averaging in the finite element method, Math. Comp., 31 (1997), 94-111.  doi: 10.1090/S0025-5718-1977-0431744-9.  Google Scholar

[8]

Z. Q. Cai, On the finite volume element method, Numer. Math., 58 (1991), 713-735.  doi: 10.1007/BF01385651.  Google Scholar

[9]

W. CaoC.-W. ShuY. Yang and Z. Zhang, Superconvergence of Discontinuous Galerkin method for nonlinear hyperbolic equations, SIAM. J. Numer. Anal., 56 (2018), 732-765.  doi: 10.1137/17M1128605.  Google Scholar

[10]

W. Cao and Z. Zhang, Superconvergence of Local Discontinuous Galerkin method for one-dimensional linear parabolic equations, Math. Comp., 85 (2016), 63-84.  doi: 10.1090/mcom/2975.  Google Scholar

[11]

W. CaoZ. Zhang and Q. Zou, Superconvergence of any order finite volume schemes for 1D general elliptic equations, J. Sci. Comput., 56 (2013), 566-590.  doi: 10.1007/s10915-013-9691-2.  Google Scholar

[12]

W. CaoZ. Zhang and Q. Zou, Superconvergence of Discontinuous Galerkin method for linear hyperbolic equations, SIAM. J. Numer. Anal., 52 (2014), 2555-2573.  doi: 10.1137/130946873.  Google Scholar

[13]

W. CaoZ. Zhang and Q. Zou, Is $2k$-conjecture valid for finite volume methods?, SIAM. J. Numer. Anal., 53 (2015), 942-962.  doi: 10.1137/130936178.  Google Scholar

[14] C. Chen, Structure Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Hunan, China, 2001.   Google Scholar
[15]

C. Chen and S. Hu, The highest order superconvergence for bi-$k$ degree rectangular elements at nodes- a proof of $2k$-conjecture,, Math. Comp., 82 (2013), 1337-1355.  doi: 10.1090/S0025-5718-2012-02653-6.  Google Scholar

[16] C. Chen and Y. Huang, High Accuracy Theory of Finite Elements, Hunan Science and Technology Press, Hunan, China, 1995.   Google Scholar
[17]

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal., 47 (2010), 4044-4072.  doi: 10.1137/090747701.  Google Scholar

[18]

S.-H. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Eng., 196 (2007), 3706-3712.  doi: 10.1016/j.cma.2006.10.025.  Google Scholar

[19] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second edition, Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[20]

R. E. EwingR. D. Lazarov and J. Wang, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), 1015-1029.  doi: 10.1137/0728054.  Google Scholar

[21]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek and P. Neittaanm$\ddot{a}$ki, On superconvergence techniques, Acta Appl. Math., 9 (1987), 175-198.  doi: 10.1007/BF00047538.  Google Scholar

[22]

M. K$ \rm\check{r} $í$ \rm\check{z} $ek, P. Neittaanm$\ddot{a}$ki and R. Stenberg (Eds.), Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series Vol. 196, Marcel Dekker, Inc., New York, 1997. Google Scholar

[23] Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements, Hebei University Press, P.R. China, 1996.   Google Scholar
[24]

A. H. SchatzI. H. Sloan and L. B. Wahlbin, Superconvergence in finite element methods and meshes which are symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), 505-521.  doi: 10.1137/0733027.  Google Scholar

[25]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, 41. Springer, Heidelberg, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[26]

V. Thomée, High order local approximation to derivatives in the finite element method, Math. Comp., 31 (1997), 652-660.  doi: 10.1090/S0025-5718-1977-0438664-4.  Google Scholar

[27]

L. B. Wahlbin, Superconvergence In Galerkin Finite Element Methods, Lecture Notes in Mathematics, 1605. Spring, Berlin, 1995. doi: 10.1007/BFb0096835.  Google Scholar

[28]

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D, Math. Comp., 79 (2010), 35-45.  doi: 10.1090/S0025-5718-09-02297-2.  Google Scholar

[29]

J. Xu and Q. Zou, Analysis of linear and quadratic simplitical finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469-492.  doi: 10.1007/s00211-008-0189-z.  Google Scholar

[30]

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), 3110-3133.  doi: 10.1137/110857647.  Google Scholar

[31]

Z. Zhang, Superconvergence points of polynomial spectral interpolation,, SIAM J. Numer. Anal., 50 (2012), 2966-2985.  doi: 10.1137/120861291.  Google Scholar

[32]

Z. Zhang, Superconvergence of a Chebyshev spectral collocation method, J. Sci. Comput., 34 (2008), 237-246.  doi: 10.1007/s10915-007-9163-7.  Google Scholar

[33] Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method, Hunan Science and Technology Press, Hunan, China, 1989.   Google Scholar
Table 1.  Errors, corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, $ \alpha = \beta = \gamma = 1 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
2 8.03e-04 - 6.11e-03 - - - 7.59e-03 - 1.31e-01 -
4 7.02e-05 3.49 4.92e-04 3.61 - - 5.61e-04 3.73 1.66e-02 2.98
3 8 4.59e-06 3.95 3.02e-05 4.04 - - 3.73e-05 3.92 2.18e-03 2.93
16 2.91e-07 4.04 1.90e-06 4.05 - - 2.66e-06 3.87 2.67e-04 3.03
32 1.80e-08 4.00 1.18e-07 3.99 - - 1.77e-07 3.90 3.38e-05 2.98
2 2.88e-05 - 2.23e-05 - 7.54e-05 - 8.72e-04 - 1.30e-02 -
4 4.25e-07 6.10 2.47e-07 6.51 1.36e-06 5.81 2.44e-05 5.17 8.88e-04 3.88
4 8 6.53e-09 6.21 5.38e-09 5.69 2.14e-08 6.17 7.91e-07 5.10 5.47e-05 4.02
16 1.04e-10 5.96 1.04e-10 5.67 3.45e-10 5.94 2.64e-08 4.89 3.73e-06 3.87
32 1.62e-12 6.00 1.84e-12 5.83 5.50e-12 5.97 8.62e-10 4.94 2.30e-07 4.02
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
2 8.03e-04 - 6.11e-03 - - - 7.59e-03 - 1.31e-01 -
4 7.02e-05 3.49 4.92e-04 3.61 - - 5.61e-04 3.73 1.66e-02 2.98
3 8 4.59e-06 3.95 3.02e-05 4.04 - - 3.73e-05 3.92 2.18e-03 2.93
16 2.91e-07 4.04 1.90e-06 4.05 - - 2.66e-06 3.87 2.67e-04 3.03
32 1.80e-08 4.00 1.18e-07 3.99 - - 1.77e-07 3.90 3.38e-05 2.98
2 2.88e-05 - 2.23e-05 - 7.54e-05 - 8.72e-04 - 1.30e-02 -
4 4.25e-07 6.10 2.47e-07 6.51 1.36e-06 5.81 2.44e-05 5.17 8.88e-04 3.88
4 8 6.53e-09 6.21 5.38e-09 5.69 2.14e-08 6.17 7.91e-07 5.10 5.47e-05 4.02
16 1.04e-10 5.96 1.04e-10 5.67 3.45e-10 5.94 2.64e-08 4.89 3.73e-06 3.87
32 1.62e-12 6.00 1.84e-12 5.83 5.50e-12 5.97 8.62e-10 4.94 2.30e-07 4.02
Table 2.  Errors, corresponding convergence rates for $ C^1 $ Gauss collocation method, $ \alpha = \beta = \gamma = 1 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u^{''}} $
$ k $ $ N $ error order error order error order error order error order
2 5.25e-03 - 1.36e-02 - - - 1.44e-02 - 8.32e-02 -
4 2.88e-04 4.13 7.26e-04 4.18 - - 8.35e-04 4.06 1.16e-02 2.84
3 8 1.82e-05 4.07 4.66e-05 4.05 - - 5.89e-05 3.91 1.61e-03 2.85
16 1.16e-06 3.94 2.91e-06 3.96 - - 4.01e-06 3.84 1.91e-04 3.08
32 7.18e-08 4.01 1.81e-07 4.01 - - 2.65e-07 3.92 2.45e-05 2.96
2 1.32e-05 - 1.04e-04 - 1.98e-04 - 9.54e-04 - 7.12e-03 -
4 2.92e-07 5.48 1.79e-06 5.85 3.14e-06 5.96 3.32e-05 4.83 5.77e-04 3.63
4 8 4.62e-09 5.97 2.80e-08 5.99 5.09e-08 5.94 1.05e-06 4.98 3.89e-05 3.89
16 7.56e-11 6.06 4.40e-10 6.12 8.61e-10 6.01 3.40e-08 5.04 2.46e-06 3.98
32 1.18e-12 6.08 6.87e-12 6.08 1.28e-11 6.15 1.05e-09 5.08 1.52e-07 4.02
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u^{''}} $
$ k $ $ N $ error order error order error order error order error order
2 5.25e-03 - 1.36e-02 - - - 1.44e-02 - 8.32e-02 -
4 2.88e-04 4.13 7.26e-04 4.18 - - 8.35e-04 4.06 1.16e-02 2.84
3 8 1.82e-05 4.07 4.66e-05 4.05 - - 5.89e-05 3.91 1.61e-03 2.85
16 1.16e-06 3.94 2.91e-06 3.96 - - 4.01e-06 3.84 1.91e-04 3.08
32 7.18e-08 4.01 1.81e-07 4.01 - - 2.65e-07 3.92 2.45e-05 2.96
2 1.32e-05 - 1.04e-04 - 1.98e-04 - 9.54e-04 - 7.12e-03 -
4 2.92e-07 5.48 1.79e-06 5.85 3.14e-06 5.96 3.32e-05 4.83 5.77e-04 3.63
4 8 4.62e-09 5.97 2.80e-08 5.99 5.09e-08 5.94 1.05e-06 4.98 3.89e-05 3.89
16 7.56e-11 6.06 4.40e-10 6.12 8.61e-10 6.01 3.40e-08 5.04 2.46e-06 3.98
32 1.18e-12 6.08 6.87e-12 6.08 1.28e-11 6.15 1.05e-09 5.08 1.52e-07 4.02
Table 3.  $ \|u_h-u_I\|_2 $ and the corresponding convergence rates, constant coefficients.
$ \|u_h-u_I\|_2 $
$ C^1 $ Petrov-Galerkin $ C^1 $ Gauss collocation
$ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $ $ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $
$ k $ $ N $ error order error order error order error order
2 3.93e-02 - 5.57e-03 - 1.12e-01 - 8.32e-02 -
4 5.15e-03 2.91 3.59e-04 3.94 1.36e-02 3.00 1.07e-02 2.93
3 8 6.47e-04 3.00 2.23e-05 3.99 1.72e-03 3.04 1.34e-03 3.03
16 8.12e-05 3.04 1.40e-06 4.02 2.17e-04 2.96 1.70e-04 2.96
32 1.01e-05 2.99 8.75e-08 4.01 2.70e-05 3.01 2.12e-05 3.03
2 3.47e-03 - 2.23e-04 - 9.86e-03 - 8.27e-03 -
4 2.24e-04 3.97 7.13e-06 4.99 6.63e-04 3.88 5.20e-04 4.02
4 8 1.40e-05 4.12 2.30e-07 5.03 4.14e-05 4.00 3.30e-05 3.94
16 8.80e-07 3.98 7.07e-09 5.01 2.59e-06 4.08 2.07e-06 4.05
32 5.50e-08 4.00 2.22e-10 5.02 1.62e-07 4.05 1.30e-07 4.04
$ \|u_h-u_I\|_2 $
$ C^1 $ Petrov-Galerkin $ C^1 $ Gauss collocation
$ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $ $ \alpha = \beta = \gamma = 1 $ $ \alpha = \gamma = 1, \beta = 0 $
$ k $ $ N $ error order error order error order error order
2 3.93e-02 - 5.57e-03 - 1.12e-01 - 8.32e-02 -
4 5.15e-03 2.91 3.59e-04 3.94 1.36e-02 3.00 1.07e-02 2.93
3 8 6.47e-04 3.00 2.23e-05 3.99 1.72e-03 3.04 1.34e-03 3.03
16 8.12e-05 3.04 1.40e-06 4.02 2.17e-04 2.96 1.70e-04 2.96
32 1.01e-05 2.99 8.75e-08 4.01 2.70e-05 3.01 2.12e-05 3.03
2 3.47e-03 - 2.23e-04 - 9.86e-03 - 8.27e-03 -
4 2.24e-04 3.97 7.13e-06 4.99 6.63e-04 3.88 5.20e-04 4.02
4 8 1.40e-05 4.12 2.30e-07 5.03 4.14e-05 4.00 3.30e-05 3.94
16 8.80e-07 3.98 7.07e-09 5.01 2.59e-06 4.08 2.07e-06 4.05
32 5.50e-08 4.00 2.22e-10 5.02 1.62e-07 4.05 1.30e-07 4.04
Table 4.  Errors and corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, variable coefficients, $ k = 3 $.
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 4.24e-04 - 4.42e-04 - 1.45e-02 - 4.98e-01 -
8 2.75e-05 3.94 2.94e-05 3.91 1.38e-03 3.39 8.75e-02 2.51
3 16 1.75e-06 3.97 1.87e-06 3.98 1.03e-04 3.74 1.25e-02 2.81
32 1.10e-07 4.00 1.17e-07 3.99 6.85e-06 3.91 1.63e-03 2.94
64 6.86e-09 4.00 7.34e-09 4.00 4.36e-07 3.97 2.05e-04 2.99
Case 2
4 3.39e-04 - 3.42e-04 - 1.37e-02 - 4.88e-01 -
8 2.25e-05 3.92 2.69e-05 3.67 1.31e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.96 1.88e-06 3.84 9.74e-05 3.74 1.22e-02 2.81
32 9.03e-08 4.00 1.23e-07 3.93 6.46e-06 3.91 1.58e-03 2.95
64 5.64e-09 4.00 7.87e-09 3.97 4.11e-07 3.98 2.00e-04 2.99
Case 3
4 3.36e-04 - 3.53e-04 - 1.37e-02 - 4.88e-01 -
8 2.26e-05 3.89 2.82e-05 3.65 1.30e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.97 1.97e-06 3.84 9.72e-05 3.75 1.22e-02 2.81
32 9.05e-08 4.00 1.29e-07 3.93 6.45e-06 3.91 1.59e-03 2.95
64 5.66e-09 4.00 8.26e-09 3.97 4.09e-07 3.98 2.00e-04 2.99
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 4.24e-04 - 4.42e-04 - 1.45e-02 - 4.98e-01 -
8 2.75e-05 3.94 2.94e-05 3.91 1.38e-03 3.39 8.75e-02 2.51
3 16 1.75e-06 3.97 1.87e-06 3.98 1.03e-04 3.74 1.25e-02 2.81
32 1.10e-07 4.00 1.17e-07 3.99 6.85e-06 3.91 1.63e-03 2.94
64 6.86e-09 4.00 7.34e-09 4.00 4.36e-07 3.97 2.05e-04 2.99
Case 2
4 3.39e-04 - 3.42e-04 - 1.37e-02 - 4.88e-01 -
8 2.25e-05 3.92 2.69e-05 3.67 1.31e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.96 1.88e-06 3.84 9.74e-05 3.74 1.22e-02 2.81
32 9.03e-08 4.00 1.23e-07 3.93 6.46e-06 3.91 1.58e-03 2.95
64 5.64e-09 4.00 7.87e-09 3.97 4.11e-07 3.98 2.00e-04 2.99
Case 3
4 3.36e-04 - 3.53e-04 - 1.37e-02 - 4.88e-01 -
8 2.26e-05 3.89 2.82e-05 3.65 1.30e-03 3.39 8.56e-02 2.51
3 16 1.44e-06 3.97 1.97e-06 3.84 9.72e-05 3.75 1.22e-02 2.81
32 9.05e-08 4.00 1.29e-07 3.93 6.45e-06 3.91 1.59e-03 2.95
64 5.66e-09 4.00 8.26e-09 3.97 4.09e-07 3.98 2.00e-04 2.99
Table 5.  Errors and corresponding convergence rates for $ C^1 $ Petrov-Galerkin method, variable coefficients, $ k = 4 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 2.56e-06 - 1.71e-06 - 4.10e-05 - 1.19e-03 - 6.21e-02 -
8 4.06e-08 5.98 3.46e-08 5.62 8.78e-07 5.55 4.83e-05 4.63 4.91e-03 3.66
4 16 6.25e-10 6.02 6.31e-10 5.78 1.35e-08 6.03 1.38e-06 5.13 2.90e-04 4.08
32 1.05e-11 5.89 1.03e-11 5.94 2.25e-10 5.90 4.78e-08 4.85 1.94e-05 3.90
64 1.63e-13 6.01 1.65e-13 5.96 4.02e-12 5.81 1.52e-09 4.98 1.24e-06 3.97
Case 2
4 1.25e-06 - 8.07e-07 - 3.91e-05 - 1.16e-03 - 6.07e-02 -
8 2.01e-08 5.96 2.10e-08 5.27 8.31e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 3.10e-10 6.02 3.99e-10 5.71 1.26e-08 6.05 1.33e-06 5.12 2.84e-04 4.08
32 5.12e-12 5.92 6.70e-12 5.90 2.13e-10 5.89 4.59e-08 4.86 1.89e-05 3.90
64 8.02e-14 6.00 1.05e-13 6.00 3.89e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Case 3
4 9.26e-07 - 5.75e-07 - 3.93e-05 - 1.16e-03 - 6.07e-02 -
8 1.48e-08 5.96 1.54e-08 5.22 8.33e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 2.29e-10 6.02 2.95e-10 5.71 1.26e-08 6.05 1.33e-06 5.11 2.84e-04 4.08
32 3.81e-12 5.91 4.94e-12 5.90 2.13e-10 5.89 4.58e-08 4.86 1.89e-05 3.90
64 5.74e-14 6.05 9.17e-14 5.75 3.91e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 2.56e-06 - 1.71e-06 - 4.10e-05 - 1.19e-03 - 6.21e-02 -
8 4.06e-08 5.98 3.46e-08 5.62 8.78e-07 5.55 4.83e-05 4.63 4.91e-03 3.66
4 16 6.25e-10 6.02 6.31e-10 5.78 1.35e-08 6.03 1.38e-06 5.13 2.90e-04 4.08
32 1.05e-11 5.89 1.03e-11 5.94 2.25e-10 5.90 4.78e-08 4.85 1.94e-05 3.90
64 1.63e-13 6.01 1.65e-13 5.96 4.02e-12 5.81 1.52e-09 4.98 1.24e-06 3.97
Case 2
4 1.25e-06 - 8.07e-07 - 3.91e-05 - 1.16e-03 - 6.07e-02 -
8 2.01e-08 5.96 2.10e-08 5.27 8.31e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 3.10e-10 6.02 3.99e-10 5.71 1.26e-08 6.05 1.33e-06 5.12 2.84e-04 4.08
32 5.12e-12 5.92 6.70e-12 5.90 2.13e-10 5.89 4.59e-08 4.86 1.89e-05 3.90
64 8.02e-14 6.00 1.05e-13 6.00 3.89e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Case 3
4 9.26e-07 - 5.75e-07 - 3.93e-05 - 1.16e-03 - 6.07e-02 -
8 1.48e-08 5.96 1.54e-08 5.22 8.33e-07 5.56 4.62e-05 4.65 4.79e-03 3.66
4 16 2.29e-10 6.02 2.95e-10 5.71 1.26e-08 6.05 1.33e-06 5.11 2.84e-04 4.08
32 3.81e-12 5.91 4.94e-12 5.90 2.13e-10 5.89 4.58e-08 4.86 1.89e-05 3.90
64 5.74e-14 6.05 9.17e-14 5.75 3.91e-12 5.77 1.46e-09 4.98 1.21e-06 3.97
Table 6.  Errors and corresponding convergence rates for $ C^1 $ Gauss collocation method, variable coefficients, $ k = 3 $.
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 2.12e-03 - 3.30e-03 - 1.29e-02 - 7.15e-02 -
8 1.43e-04 3.89 5.10e-04 2.69 1.33e-03 3.28 1.35e-02 2.41
3 16 8.87e-06 4.01 4.71e-05 3.44 1.01e-04 3.72 2.03e-03 2.73
32 5.49e-07 4.02 3.42e-06 3.78 6.67e-06 3.92 2.76e-04 2.88
64 3.42e-08 4.00 2.24e-07 3.93 4.22e-07 3.98 3.59e-05 2.94
Case 2
4 2.30e-03 - 2.97e-03 - 1.42e-02 - 9.18e-02 -
8 1.56e-04 3.89 5.01e-04 2.57 1.45e-03 3.30 1.71e-02 2.43
3 16 9.62e-06 4.02 4.72e-05 3.41 1.09e-04 3.72 2.55e-03 2.74
32 5.95e-07 4.01 3.45e-06 3.77 7.25e-06 3.92 3.46e-04 2.88
64 3.71e-08 4.00 2.26e-07 3.93 4.59e-07 3.98 4.49e-05 2.94
Case 3
4 2.37e-03 - 2.84e-03 - 1.45e-02 - 9.13e-02 -
8 1.59e-04 3.89 4.85e-04 2.55 1.47e-03 3.30 1.70e-02 2.43
3 16 9.82e-06 4.02 4.60e-05 3.40 1.11e-04 3.73 2.54e-03 2.74
32 6.08e-07 4.01 3.37e-06 3.77 7.33e-06 3.92 3.45e-04 2.88
64 3.79e-08 4.00 2.21e-07 3.93 4.64e-07 3.98 4.49e-05 2.94
$ e_{un} $ $ e_{u'n} $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order
Case 1
4 2.12e-03 - 3.30e-03 - 1.29e-02 - 7.15e-02 -
8 1.43e-04 3.89 5.10e-04 2.69 1.33e-03 3.28 1.35e-02 2.41
3 16 8.87e-06 4.01 4.71e-05 3.44 1.01e-04 3.72 2.03e-03 2.73
32 5.49e-07 4.02 3.42e-06 3.78 6.67e-06 3.92 2.76e-04 2.88
64 3.42e-08 4.00 2.24e-07 3.93 4.22e-07 3.98 3.59e-05 2.94
Case 2
4 2.30e-03 - 2.97e-03 - 1.42e-02 - 9.18e-02 -
8 1.56e-04 3.89 5.01e-04 2.57 1.45e-03 3.30 1.71e-02 2.43
3 16 9.62e-06 4.02 4.72e-05 3.41 1.09e-04 3.72 2.55e-03 2.74
32 5.95e-07 4.01 3.45e-06 3.77 7.25e-06 3.92 3.46e-04 2.88
64 3.71e-08 4.00 2.26e-07 3.93 4.59e-07 3.98 4.49e-05 2.94
Case 3
4 2.37e-03 - 2.84e-03 - 1.45e-02 - 9.13e-02 -
8 1.59e-04 3.89 4.85e-04 2.55 1.47e-03 3.30 1.70e-02 2.43
3 16 9.82e-06 4.02 4.60e-05 3.40 1.11e-04 3.73 2.54e-03 2.74
32 6.08e-07 4.01 3.37e-06 3.77 7.33e-06 3.92 3.45e-04 2.88
64 3.79e-08 4.00 2.21e-07 3.93 4.64e-07 3.98 4.49e-05 2.94
Table 7.  Errors and corresponding convergence rates for $ C^1 $ Gauss collocation method, variable coefficients, $ k = 4 $.
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 1.45e-05 - 1.16e-04 - 8.66e-05 - 1.00e-03 - 8.32e-03 -
8 4.69e-07 4.95 3.01e-06 5.27 1.53e-06 5.82 3.87e-05 4.69 7.68e-04 3.44
4 16 1.25e-08 5.23 4.84e-08 5.96 1.64e-08 6.55 1.14e-06 5.09 5.70e-05 3.75
32 2.23e-10 5.81 7.53e-10 6.01 4.01e-10 5.35 3.76e-08 4.92 3.73e-06 3.94
64 3.61e-12 5.95 1.18e-11 6.00 7.73e-12 5.70 1.18e-09 4.99 2.34e-07 4.00
Case 2
4 1.60e-05 - 1.15e-04 - 9.17e-05 - 1.09e-03 - 1.06e-02 -
8 4.82e-07 5.05 3.09e-06 5.22 1.63e-06 5.81 4.18e-05 4.70 9.85e-04 3.42
4 16 1.31e-08 5.20 5.06e-08 5.93 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.35e-10 5.80 7.92e-10 6.00 4.08e-10 5.45 4.10e-08 4.93 4.68e-06 3.94
64 3.80e-12 5.95 1.24e-11 6.00 7.92e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Case 3
4 1.61e-05 - 1.15e-04 - 9.18e-05 - 1.09e-03 - 1.05e-02 -
8 4.84e-07 5.06 3.08e-06 5.22 1.63e-06 5.82 4.18e-05 4.70 9.86e-04 3.42
4 16 1.32e-08 5.20 5.07e-08 5.92 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.37e-10 5.80 7.96e-10 5.99 4.06e-10 5.45 4.10e-08 4.93 4.68e-06 3.95
64 3.84e-12 5.95 1.25e-11 6.00 7.89e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
$ e_{un} $ $ e_{u'n} $ $ e_u $ $ e_{u'} $ $ e_{u''} $
$ k $ $ N $ error order error order error order error order error order
Case 1
4 1.45e-05 - 1.16e-04 - 8.66e-05 - 1.00e-03 - 8.32e-03 -
8 4.69e-07 4.95 3.01e-06 5.27 1.53e-06 5.82 3.87e-05 4.69 7.68e-04 3.44
4 16 1.25e-08 5.23 4.84e-08 5.96 1.64e-08 6.55 1.14e-06 5.09 5.70e-05 3.75
32 2.23e-10 5.81 7.53e-10 6.01 4.01e-10 5.35 3.76e-08 4.92 3.73e-06 3.94
64 3.61e-12 5.95 1.18e-11 6.00 7.73e-12 5.70 1.18e-09 4.99 2.34e-07 4.00
Case 2
4 1.60e-05 - 1.15e-04 - 9.17e-05 - 1.09e-03 - 1.06e-02 -
8 4.82e-07 5.05 3.09e-06 5.22 1.63e-06 5.81 4.18e-05 4.70 9.85e-04 3.42
4 16 1.31e-08 5.20 5.06e-08 5.93 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.35e-10 5.80 7.92e-10 6.00 4.08e-10 5.45 4.10e-08 4.93 4.68e-06 3.94
64 3.80e-12 5.95 1.24e-11 6.00 7.92e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Case 3
4 1.61e-05 - 1.15e-04 - 9.18e-05 - 1.09e-03 - 1.05e-02 -
8 4.84e-07 5.06 3.08e-06 5.22 1.63e-06 5.82 4.18e-05 4.70 9.86e-04 3.42
4 16 1.32e-08 5.20 5.07e-08 5.92 1.78e-08 6.52 1.25e-06 5.06 7.21e-05 3.77
32 2.37e-10 5.80 7.96e-10 5.99 4.06e-10 5.45 4.10e-08 4.93 4.68e-06 3.95
64 3.84e-12 5.95 1.25e-11 6.00 7.89e-12 5.69 1.28e-09 5.00 2.93e-07 4.00
Table 8.  $ \|u_h-u_I\|_2 $ and corresponding convergence rates, variable coefficients, $ k = 3 $.
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 2.35e-02 - 1.89e-02 - 1.89e-02 -
8 3.46e-03 2.77 2.82e-03 2.75 2.82e-03 2.75
$ C^1 $ Petrov-Galerkin 3 16 4.49e-04 2.94 3.67e-04 2.94 3.67e-04 2.94
32 5.66e-05 2.99 4.64e-05 2.99 4.64e-05 2.99
64 7.10e-06 3.00 5.81e-06 3.00 5.81e-06 3.00
4 1.86e-01 - 1.93e-01 - 1.93e-01 -
8 2.65e-02 2.81 2.75e-02 2.81 2.75e-02 2.81
$ C^1 $ Gauss collocation 3 16 3.37e-03 2.97 3.51e-03 2.97 3.51e-03 2.97
32 4.22e-04 3.00 4.39e-04 3.00 4.39e-04 3.00
64 5.27e-05 3.00 5.49e-05 3.00 5.49e-05 3.00
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 2.35e-02 - 1.89e-02 - 1.89e-02 -
8 3.46e-03 2.77 2.82e-03 2.75 2.82e-03 2.75
$ C^1 $ Petrov-Galerkin 3 16 4.49e-04 2.94 3.67e-04 2.94 3.67e-04 2.94
32 5.66e-05 2.99 4.64e-05 2.99 4.64e-05 2.99
64 7.10e-06 3.00 5.81e-06 3.00 5.81e-06 3.00
4 1.86e-01 - 1.93e-01 - 1.93e-01 -
8 2.65e-02 2.81 2.75e-02 2.81 2.75e-02 2.81
$ C^1 $ Gauss collocation 3 16 3.37e-03 2.97 3.51e-03 2.97 3.51e-03 2.97
32 4.22e-04 3.00 4.39e-04 3.00 4.39e-04 3.00
64 5.27e-05 3.00 5.49e-05 3.00 5.49e-05 3.00
Table 9.  $ \|u_h-u_I\|_2 $ and corresponding convergence rates, variable coefficients, $ k = 4 $.
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 5.03e-03 - 4.48e-03 - 4.48e-03 -
8 3.53e-04 3.83 3.17e-04 3.82 3.17e-04 3.82
$ C^1 $ Petrov-Galerkin 4 16 2.24e-05 3.98 2.01e-05 3.98 2.01e-05 3.98
32 1.40e-06 4.00 1.26e-06 4.00 1.26e-06 4.00
64 8.75e-08 4.00 7.86e-08 4.00 7.86e-08 4.00
4 2.09e-02 - 2.18e-02 - 2.18e-02 -
8 1.32e-03 3.99 1.38e-03 3.99 1.38e-03 3.99
$ C^1 $ Gauss collocation 4 16 7.74e-05 4.09 8.12e-05 4.08 8.12e-05 4.08
32 4.86e-06 3.99 5.09e-06 4.00 5.09e-06 4.00
64 3.06e-07 3.99 3.20e-07 3.99 3.20e-07 3.99
$ \|u_h-u_I\|_2 $
$ k $ $ N $ error order error order error order
Case 1 Case 2 Case 3
4 5.03e-03 - 4.48e-03 - 4.48e-03 -
8 3.53e-04 3.83 3.17e-04 3.82 3.17e-04 3.82
$ C^1 $ Petrov-Galerkin 4 16 2.24e-05 3.98 2.01e-05 3.98 2.01e-05 3.98
32 1.40e-06 4.00 1.26e-06 4.00 1.26e-06 4.00
64 8.75e-08 4.00 7.86e-08 4.00 7.86e-08 4.00
4 2.09e-02 - 2.18e-02 - 2.18e-02 -
8 1.32e-03 3.99 1.38e-03 3.99 1.38e-03 3.99
$ C^1 $ Gauss collocation 4 16 7.74e-05 4.09 8.12e-05 4.08 8.12e-05 4.08
32 4.86e-06 3.99 5.09e-06 4.00 5.09e-06 4.00
64 3.06e-07 3.99 3.20e-07 3.99 3.20e-07 3.99
[1]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[16]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[19]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (14)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]