[1]
|
F. Abbona and E. Venturino, An eco-epidemic model for infectious keratoconjunctivitis caused by mycoplasma conjunctivae in domestic and wild herbivores, with possible vaccination strategies, Math. Methods Appl. Sci., 41 (2018), 2269-2280.
doi: 10.1002/mma.4209.
|
[2]
|
O. Arino, A. El abdllaoui, J. Mikram and J. Chattopadhyay, Infection in prey population may act as a biological control in ratio-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116.
doi: 10.1088/0951-7715/17/3/018.
|
[3]
|
B. S. Attili and S. F. Mallak, Existence of limit cycles in a predator-prey system with a functional response of the form arctan(ax), Commun. Math. Anal., 1 (2006), 33-40.
|
[4]
|
N. Bairagi, P. K. Roy and J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functionsa comparative study, J. Theo. Biol., 248 (2007), 10-25.
doi: 10.1016/j.jtbi.2007.05.005.
|
[5]
|
F. Barbara, V. La Morgia, V. Parodi, G. Toscano and E. Venturino, Analysis of the incidence of poxvirus on the dynamics between red and grey squirrels, Mathematics, 6 (2018), 113.
doi: 10.3390/math6070113.
|
[6]
|
E. Beltrami and T. O. Carroll, Modeling the role of viral disease in recurrent phytoplankton bloom, Journal of Mathematical Biology, 32 (1994), 857-863.
doi: 10.1007/BF00168802.
|
[7]
|
S. P. Bera, A. Maiti and G. P. Samanta, Prey-predator model with infection in both prey and predator, Filomat, 29 (2015), 1753-1767.
doi: 10.2298/FIL1508753B.
|
[8]
|
E. Cagliero and E. Venturino, Ecoepidemics with infected prey in herd defence: The harmless and toxic cases, Int. J. Comp. Math., 93 (2016), 108-127.
doi: 10.1080/00207160.2014.988614.
|
[9]
|
J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlin. Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6.
|
[10]
|
J. Chattopadhyay and S. Pal, Viral infection on phytoplankton zooplankton system a mathematical model, Ecological Modeling, 151 (2002), 15-28.
doi: 10.1016/S0304-3800(01)00415-X.
|
[11]
|
J. Chattopadhyay, S. Pal and A. El Abdllaoui, Classical predator-prey system with infection of prey populationa mathematical model, Math. Meth. in the App. Sci., 26 (2003), 1211-1222.
doi: 10.1002/mma.414.
|
[12]
|
Y. Chen and Y. Wen, Impact on the predator population while lethal disease spreads in the prey, Math. Meth. in App. Sci., 39 (2016), 2883-2895.
doi: 10.1002/mma.3737.
|
[13]
|
J. P. Collins, Amphibian decline and extinction: What we know and what we need to learn, Dis. Aquat. Org., 92 (2010), 93-99.
doi: 10.3354/dao02307.
|
[14]
|
J. P. Collins, M. L. Crump and T. E. Lovejoy III, Extinction in our Times: Global Amphibian Decline, Oxford University Press, 2009.
|
[15]
|
K. P. Das and J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in the both populations, Int. J. Biomath., 8 (2015), 1550015, 27 pp.
doi: 10.1142/S1793524515500151.
|
[16]
|
L. M. E. de Assis, E. Massad, R. A. de Assis, S. R. Martorano and E. Venturino, A mathematical model for bovine tuberculosis among buffaloes and lions in the kruger national park, Mathematical Methods in the Applied Sciences, 41 (2018), 525-543.
doi: 10.1002/mma.4568.
|
[17]
|
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7.
|
[18]
|
T. Dhirasakdanon and H. Thieme, Stability of the endemic coexistence equilibrium for one host and two parasites, Mathematical Modelling of Natural Phenomena, 5 (2010), 109-138.
doi: 10.1051/mmnp/20105606.
|
[19]
|
D. E. Docherty, C. U. Meteyer, J. Wang, J. Mao, S. T. Case and V. G. Chinchar, Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events, J. Wildl. Dis., 39 (2003), 556-566.
doi: 10.7589/0090-3558-39.3.556.
|
[20]
|
A. Farrell, Prey-Predator-Parasite: An Ecosystem Model with Fragile Persistence, Thesis (Ph.D.)-Arizona State University. 2017,238 pp.
|
[21]
|
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme, Do fatal infectious diseases eradicate host species?, J. Math. Biol., 77 (2018), 2103-2164.
doi: 10.1007/s00285-018-1249-3.
|
[22]
|
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme, Times from infection to disease-induced death and their influence on final population sizes after epidemic outbreaks, Bull. Math. Biol., 80 (2018), 1937-1961.
doi: 10.1007/s11538-018-0446-y.
|
[23]
|
A. Friedman and A.-A. Yakubu, Host demographic Allee effect, fatal disease, and migration: Persistence or extinction, SIAM J. Appl. Math., 72 (2012), 1644-1666.
doi: 10.1137/120861382.
|
[24]
|
J. Gani and R. J. Swift, Prey-predator models with infected prey and predators, Disc. and Cont. Dyn. Sys., 33 (2013), 5059-5066.
doi: 10.3934/dcds.2013.33.5059.
|
[25]
|
W. M. Getz and J. Pickering, Epidemic models: Thresholds and population regulation, Am. Nat., 121 (1983), 892-898.
doi: 10.1086/284112.
|
[26]
|
M. Ghosh and X.-Z. Li, Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7 (2016), 443-458.
doi: 10.1504/IJCSM.2016.080075.
|
[27]
|
G. Gimmelli, B. W. Kooi and E. Venturino, Ecoepidemic models with prey group defense and feeding saturation, Ecol. Complex., 22 (2015), 50-58.
doi: 10.1016/j.ecocom.2015.02.004.
|
[28]
|
M. J. Gray and V. G. Chinchar, Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates, Springer, 2015.
|
[29]
|
M. J. Gray, D. L. Miller and J. T. Hoverman, Ecology and pathology of amphibian ranaviruses, Dis. Aquat. Organ., 87 (2009), 243-266.
doi: 10.3354/dao02138.
|
[30]
|
D. E. Green, K. A. Converse and A. K. Schrader, Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001, Ann. N. Y. Acad. Sci., 969 (2002), 323-339.
doi: 10.1111/j.1749-6632.2002.tb04400.x.
|
[31]
|
D. Greenhalgh and R. Das, An SIRS epidemic model with a contact rate depending on population density, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 79-101.
|
[32]
|
A. L. Greer, C. J. Briggs and J. P. Collins, Testing a key assumption of host-pathogen theory: Density and disease transmission, Oikos, 117 (2008), 1667-1673.
doi: 10.1111/j.1600-0706.2008.16783.x.
|
[33]
|
K. P. Hadeler, K. Dietz and M. Safan, Case fatality models for epidemics in growing populations, Math. Biosci., 281 (2016), 120-127.
doi: 10.1016/j.mbs.2016.09.007.
|
[34]
|
K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947.
|
[35]
|
J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Company, Inc., 1980.
|
[36]
|
L. Han, Z. Ma and H. W. Hethcote, Four predator prey models with infectious diseases, Math. Comp. Modeling, 34 (2001), 849-858.
doi: 10.1016/S0895-7177(01)00104-2.
|
[37]
|
L. Han and A. Pugliese, Epidemics in two competing species, Nonlin. Anal. RWA, 10 (2009), 723-744.
doi: 10.1016/j.nonrwa.2007.11.005.
|
[38]
|
M. Haque and D. Greenhalgh, When a predator avoids infected prey: A model-based theoretical study, Math. Med. Biol., 27 (2010), 75-94.
doi: 10.1093/imammb/dqp007.
|
[39]
|
M. Haque, J. Zhen and E. Venturino, An ecoepidemiological predator-prey model with standard disease incidence, Math. Meth. Appl. Sci., 32 (2009), 875-898.
doi: 10.1002/mma.1071.
|
[40]
|
H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Pop. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010.
|
[41]
|
H. W. Hethcote, W. Wang and Y. Li, Species coexistence and periodicity in host-host-pathogen models, J. Math. Biol., 51 (2005), 629-660.
doi: 10.1007/s00285-005-0335-5.
|
[42]
|
F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, J. Biol. Dyn., 4 (2010), 86-101.
doi: 10.1080/17513750903026429.
|
[43]
|
S. Hsu, S. Ruan and T.-H. Yang, Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7.
|
[44]
|
P. J. Hudson, A. P. Dobson and D. Newborn, Do parasites make prey vulnerable to predation? red grouse and parasites, J. Animal Ecol., 61 (1992), 681-692.
doi: 10.2307/5623.
|
[45]
|
A. D. Jassby and T. Platt, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnology and oceanography, 21 (1976), 540-547.
doi: 10.4319/lo.1976.21.4.0540.
|
[46]
|
Q. J. A. Khan, M. A. Al-Lawatia and F. Al-Kharousi, Predator-prey harvesting model with fatal disease in prey, Math. Meth. in App. Sci., 39 (2016), 2647-2658.
doi: 10.1002/mma.3718.
|
[47]
|
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Pattern in Ecology and Epidemiology. Theory, Models, and Simulation, Chapman & Hall/CRC, Boca Raton, FL, 2008.
|
[48]
|
D. Mukherjee, Persistence aspect of a predator-prey model with disease in the prey, Differ. Equ. Dyn. Syst., 24 (2016), 173-188.
doi: 10.1007/s12591-014-0213-y.
|
[49]
|
L. J. Rachowicz, J. M. Hero, R. A. Alford, J. W. Taylor, V. T. Vredenburg, J. A. T. Morgan, J. P. Collins and C. J. Briggs, The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife, Conserv. Biol., 19 (2005), 1441-1448.
doi: 10.1111/j.1523-1739.2005.00255.x.
|
[50]
|
S. G. Ruan and H. I. Freedman, Persistence in three-species food chain models with group defense, Math. Biosci., 107 (1991), 111-125.
doi: 10.1016/0025-5564(91)90074-S.
|
[51]
|
S. Sarwardi, M. Haque and E. Venturino, A Leslie-Gower Holling-type Ⅱ ecoepidemic model, J. of App. Math. Comp., 35 (2011), 263-280.
doi: 10.1007/s12190-009-0355-1.
|
[52]
|
S. Sarwardi, M. Haque and E. Venturino, Global stability and persistence in LG-Holling type Ⅱ diseased predator ecosystems, J. Biol. Phys., 37 (2011), 91-106.
doi: 10.1007/s10867-010-9201-9.
|
[53]
|
G. Seo and G. S. K. Wolkowicz, Existence of multiple limit cycles in a predator-prey model with arctan(ax) as functional response, Commun. Math. Anal., 18 (2015), 64-68.
|
[54]
|
G. Seo and G. S. K. Wolkowicz, Sensitivity of the dynamics of the general rosenzweig-macarthur model to the mathematical form of the functional response: A bifurcation theory approach, J. Math. Biol, 76 (2018), 1873-1906.
doi: 10.1007/s00285-017-1201-y.
|
[55]
|
B. K. Singh, J. Chattopadhyay and S. Sinha, The role of virus infection in a simple phytoplankton zooplankton system, J. Theoret. Biol., 231 (2004), 153-166.
doi: 10.1016/j.jtbi.2004.06.010.
|
[56]
|
J.-J. E. Slotine and W. Li et al., Applied Nonlinear Control, vol. 199, Prentice hall Englewood Cliffs, NJ, 1991.
|
[57]
|
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc, Providence, 2011.
doi: 10.1090/gsm/118.
|
[58]
|
S. A. Temple, Do predators always capture substandard individuals disproportionately from prey population?, Ecology, 68 (1987), 669-674.
doi: 10.2307/1938472.
|
[59]
|
H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.
doi: 10.1016/0025-5564(92)90081-7.
|
[60]
|
H. R. Thieme, Mathematical Population Biology, Princeton University Press, Princeton, 2003.
|
[61]
|
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267.
|
[62]
|
H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?, J. Biol. Dyn., 3 (2009), 305-323.
doi: 10.1080/17513750802376313.
|
[63]
|
P. K. Tiwari, S. K. Sasmal, A. Sha, E. Venturino and J. Chattopadhyay, Effect of diseases on symbiotic systems, BioSystems, 159 (2017), 36-50.
doi: 10.1016/j.biosystems.2017.07.001.
|
[64]
|
E. Venturino, The influence of diseases on Lotka-Volterra systems, Rocky Mt. J. Math., 24 (1994), 381-402.
doi: 10.1216/rmjm/1181072471.
|
[65]
|
E. Venturino, Ecoepidemiology: A more comprehensive view of population interactions, Math. Model. Nat. Phenom., 11 (2016), 49-90.
doi: 10.1051/mmnp/201611104.
|
[66]
|
E. Venturino, O. Arino, D. Axelrod, M. Kimmel, M. Langlais and eds., Epidemics in predatorprey models: disease in the prey, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 381-393.
|
[67]
|
M. Q. Wilber, R. A. Knapp, M. Toothman and C. J. Briggs, Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease, Ecol. Lett., 20 (2017), 1169-1181.
doi: 10.1111/ele.12814.
|
[68]
|
Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258 (2001), 733-754.
doi: 10.1006/jmaa.2001.7514.
|
[69]
|
Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9.
|
[70]
|
Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, App. Math. Comp., 131 (2002), 397-414.
doi: 10.1016/S0096-3003(01)00156-4.
|
[71]
|
P. Yongzhen, L. Shuping and L. Changgua, Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311-321.
doi: 10.1007/s11071-010-9805-4.
|
[72]
|
E. F. Zipkin, G. V. DiRenzo, J. M. Ray, S. Rossman and K. R. Lips, Tropical snake diversity collapses after widespread amphibian loss, Science, 367 (2020), 814-816.
doi: 10.1126/science.aay5733.
|