# American Institute of Mathematical Sciences

## Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence

 1 Department of Mathematics, The University of Arizona, Tucson, AZ 85721-0089, USA 2 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA

* Corresponding author

Received  March 2020 Revised  October 2020 Published  November 2020

To underpin the concern that environmental change can flip an ecosystem from stable persistence to sudden total collapse, we consider a class of so-called ecoepidemic models, predator – prey/host – parasite systems, in which a base species is prey to a predator species and host to a micro-parasite species. Our model uses generalized frequency-dependent incidence for the disease transmission and mass action kinetics for predation.

We show that a large variety of dynamics can arise, ranging from dynamic persistence of all three species to either total ecosystem collapse caused by high transmissibility of the parasite on the one hand or to parasite extinction and prey-predator survival due to low parasite transmissibility on the other hand. We identify a threshold parameter (tipping number) for the transition of the ecosystem from uniform prey/host persistence to total extinction under suitable initial conditions.

Citation: Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020328
##### References:

show all references

##### References:
Summary of the dynamics of the host-parasite subsystem when $\xi$ is decreasing
 $^{{\dagger}}$ means that this event only occurs if the corresponding parameter inequality is strict or $\xi$ is strictly decreasing; GAS stands for "globally asymptotically stable." Parameter Values Dynamics ${{\sigma}}\le \frac{{{\mu}}}{h'(0)}$ $S(0)>0 \Longrightarrow r(t)\to 0, S(t)\to K$ $\frac{{{\mu}}}{h'(0)}<{{\sigma}}\le \frac{{{\mu}}+g(0)}{h'(0)}$ no $(0,r^\circ)$, $(S^*,r^*)$ GAS$^{{\dagger}}$ for $(0,\infty)^2$ $\frac{{{\mu}}+g(0)}{h'(0)}<{{\sigma}}<\frac{g(0)}{h(g(0)/{{\mu}})}$ $\exists (0,r^\circ)$, $(S^*,r^*)$ GAS for $(0,\infty)^2$ $\frac{g(0)}{h(g(0)/{{\mu}})} \le {{\sigma}}<\frac{{{\mu}}+g(0)}{h(\infty)}$ $\exists (0,r^\circ)$, $r(0)>0 \Longrightarrow S(t)\to 0$ $\frac{{{\mu}}+g(0)}{h(\infty)}\le {{\sigma}}$ $r(0)> 0 \Longrightarrow S(t)\to 0, (r(t)\to\infty)^{{\dagger}}$
 $^{{\dagger}}$ means that this event only occurs if the corresponding parameter inequality is strict or $\xi$ is strictly decreasing; GAS stands for "globally asymptotically stable." Parameter Values Dynamics ${{\sigma}}\le \frac{{{\mu}}}{h'(0)}$ $S(0)>0 \Longrightarrow r(t)\to 0, S(t)\to K$ $\frac{{{\mu}}}{h'(0)}<{{\sigma}}\le \frac{{{\mu}}+g(0)}{h'(0)}$ no $(0,r^\circ)$, $(S^*,r^*)$ GAS$^{{\dagger}}$ for $(0,\infty)^2$ $\frac{{{\mu}}+g(0)}{h'(0)}<{{\sigma}}<\frac{g(0)}{h(g(0)/{{\mu}})}$ $\exists (0,r^\circ)$, $(S^*,r^*)$ GAS for $(0,\infty)^2$ $\frac{g(0)}{h(g(0)/{{\mu}})} \le {{\sigma}}<\frac{{{\mu}}+g(0)}{h(\infty)}$ $\exists (0,r^\circ)$, $r(0)>0 \Longrightarrow S(t)\to 0$ $\frac{{{\mu}}+g(0)}{h(\infty)}\le {{\sigma}}$ $r(0)> 0 \Longrightarrow S(t)\to 0, (r(t)\to\infty)^{{\dagger}}$
 [1] Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465 [2] Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 [3] Federico Rodriguez Hertz, Zhiren Wang. On $\epsilon$-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 [4] Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $(n, m)$-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117 [5] Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 [6] Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 [7] Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431 [8] A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables