
-
Previous Article
Chaotic dynamics in a simple predator-prey model with discrete delay
- DCDS-B Home
- This Issue
-
Next Article
A spatial food chain model for the Black Sea Anchovy, and its optimal fishery
The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect
Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan |
In this paper, we analyze the interaction of localized patterns such as traveling wave solutions for reaction-diffusion systems with nonlocal effect in one space dimension. We consider the case that a nonlocal effect is given by the convolution with a suitable integral kernel. At first, we deduce the equation describing the movement of interacting localized patterns in a mathematically rigorous way, assuming that there exists a linearly stable localized solution for general reaction-diffusion systems with nonlocal effect. When the distances between localized patterns are sufficiently large, the motion of localized patterns can be reduced to the equation for the distances between them. Finally, using this equation, we analyze the interaction of front solutions to some nonlocal scalar equation. Under some assumptions, we can show that the front solutions are interacting attractively for a large class of integral kernels.
References:
[1] |
F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010.
doi: 10.1090/surv/165. |
[2] |
P. W. Bates,
On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.
|
[3] |
P. W. Bates and F. Chen,
Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.
doi: 10.1016/S0022-247X(02)00205-6. |
[4] |
P. W. Bates and F. Chen,
Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.
doi: 10.1137/S0036141004443968. |
[5] |
P. W. Bates, X. Chen and A. J. J. Chmaj,
Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.
doi: 10.1007/s00526-005-0308-y. |
[6] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[7] |
J. A. Carrillo, H. Murakawa, M. Sato, H. Togashi and O. Trush,
A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.
doi: 10.1016/j.jtbi.2019.04.023. |
[8] |
F. Chen,
Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.
doi: 10.1016/S0362-546X(01)00787-8. |
[9] |
X. Chen,
Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[10] |
A. Chmaj and X. Ren,
Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.
doi: 10.1006/jdeq.1998.3571. |
[11] |
J. Coville and L. Dupaigne,
On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[12] |
A. Doleman, R. A. Gardner and T. J. Kaper,
Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.
doi: 10.1016/S0167-2789(98)00180-8. |
[13] |
S.-I. Ei,
The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.
doi: 10.1023/A:1012980128575. |
[14] |
S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp.
doi: 10.1016/j.jmaa.2020.124007. |
[15] |
S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496.
doi: 10.1016/j.jtbi.2020.110496. |
[16] |
S.-I. Ei and H. Matsuzawa,
The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.
doi: 10.3934/dcds.2010.26.901. |
[17] |
P. C. Fife and J. B. Mcleod,
The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432. |
[18] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[19] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[20] |
S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203.
doi: 10.1103/PhysRevE.75.015203. |
[21] |
C. K. R. T. Jones,
Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.
doi: 10.1090/S0002-9947-1984-0760971-6. |
[22] |
S. Kondo,
An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.
doi: 10.1016/j.jtbi.2016.11.003. |
[23] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[24] |
M. Mimura and M. Nagayama,
Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.
doi: 10.1063/1.166282. |
[25] |
J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
doi: 10.1007/b98869. |
[26] |
Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542.
doi: 10.1038/s41598-018-29543-y. |
[27] |
A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo,
Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.
doi: 10.1073/pnas.0808622106. |
[28] |
H. Ninomiya, Y. Tanaka and H. Yamamoto,
Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.
doi: 10.1007/s00285-017-1113-x. |
[29] |
K. J. Painter, J. M. Bloomfield, J. A. Sherratt and A. Gerisch,
A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.
doi: 10.1007/s11538-015-0080-x. |
[30] |
J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014.
doi: 10.1209/0295-5075/109/40014. |
[31] |
T. Sushida, S. Kondo, K. Sugihara and M. Mimura,
A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.
doi: 10.1007/s13160-017-0272-x. |
[32] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.
doi: 10.1098/rstb.1952.0012. |
[33] |
E. Yanagida,
Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.
doi: 10.1007/BF00276548. |
[34] |
G. Zhao and S. Ruan,
The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.
doi: 10.1051/mmnp/20150610. |
show all references
References:
[1] |
F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010.
doi: 10.1090/surv/165. |
[2] |
P. W. Bates,
On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.
|
[3] |
P. W. Bates and F. Chen,
Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.
doi: 10.1016/S0022-247X(02)00205-6. |
[4] |
P. W. Bates and F. Chen,
Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.
doi: 10.1137/S0036141004443968. |
[5] |
P. W. Bates, X. Chen and A. J. J. Chmaj,
Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.
doi: 10.1007/s00526-005-0308-y. |
[6] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[7] |
J. A. Carrillo, H. Murakawa, M. Sato, H. Togashi and O. Trush,
A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.
doi: 10.1016/j.jtbi.2019.04.023. |
[8] |
F. Chen,
Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.
doi: 10.1016/S0362-546X(01)00787-8. |
[9] |
X. Chen,
Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[10] |
A. Chmaj and X. Ren,
Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.
doi: 10.1006/jdeq.1998.3571. |
[11] |
J. Coville and L. Dupaigne,
On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[12] |
A. Doleman, R. A. Gardner and T. J. Kaper,
Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.
doi: 10.1016/S0167-2789(98)00180-8. |
[13] |
S.-I. Ei,
The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.
doi: 10.1023/A:1012980128575. |
[14] |
S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp.
doi: 10.1016/j.jmaa.2020.124007. |
[15] |
S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496.
doi: 10.1016/j.jtbi.2020.110496. |
[16] |
S.-I. Ei and H. Matsuzawa,
The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.
doi: 10.3934/dcds.2010.26.901. |
[17] |
P. C. Fife and J. B. Mcleod,
The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432. |
[18] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[19] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[20] |
S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203.
doi: 10.1103/PhysRevE.75.015203. |
[21] |
C. K. R. T. Jones,
Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.
doi: 10.1090/S0002-9947-1984-0760971-6. |
[22] |
S. Kondo,
An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.
doi: 10.1016/j.jtbi.2016.11.003. |
[23] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[24] |
M. Mimura and M. Nagayama,
Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.
doi: 10.1063/1.166282. |
[25] |
J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
doi: 10.1007/b98869. |
[26] |
Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542.
doi: 10.1038/s41598-018-29543-y. |
[27] |
A. Nakamasu, G. Takahashi, A. Kanbe and S. Kondo,
Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.
doi: 10.1073/pnas.0808622106. |
[28] |
H. Ninomiya, Y. Tanaka and H. Yamamoto,
Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.
doi: 10.1007/s00285-017-1113-x. |
[29] |
K. J. Painter, J. M. Bloomfield, J. A. Sherratt and A. Gerisch,
A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.
doi: 10.1007/s11538-015-0080-x. |
[30] |
J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014.
doi: 10.1209/0295-5075/109/40014. |
[31] |
T. Sushida, S. Kondo, K. Sugihara and M. Mimura,
A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.
doi: 10.1007/s13160-017-0272-x. |
[32] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.
doi: 10.1098/rstb.1952.0012. |
[33] |
E. Yanagida,
Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.
doi: 10.1007/BF00276548. |
[34] |
G. Zhao and S. Ruan,
The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.
doi: 10.1051/mmnp/20150610. |





[1] |
Hala Ghazi, François James, Hélène Mathis. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2371-2409. doi: 10.3934/dcdsb.2020183 |
[2] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[3] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[4] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[5] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[6] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[7] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[8] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[9] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[10] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[11] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[12] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[13] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[17] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[18] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[19] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[20] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]