January  2021, 26(1): 173-190. doi: 10.3934/dcdsb.2020329

The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

* Corresponding author: Shin-Ichiro Ei

Received  March 2020 Revised  October 2020 Published  January 2021 Early access  November 2020

In this paper, we analyze the interaction of localized patterns such as traveling wave solutions for reaction-diffusion systems with nonlocal effect in one space dimension. We consider the case that a nonlocal effect is given by the convolution with a suitable integral kernel. At first, we deduce the equation describing the movement of interacting localized patterns in a mathematically rigorous way, assuming that there exists a linearly stable localized solution for general reaction-diffusion systems with nonlocal effect. When the distances between localized patterns are sufficiently large, the motion of localized patterns can be reduced to the equation for the distances between them. Finally, using this equation, we analyze the interaction of front solutions to some nonlocal scalar equation. Under some assumptions, we can show that the front solutions are interacting attractively for a large class of integral kernels.

Citation: Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329
References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.   Google Scholar

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.  Google Scholar

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.  Google Scholar

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.  Google Scholar

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.  Google Scholar

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.  Google Scholar

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.  Google Scholar

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.  Google Scholar

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.  Google Scholar

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.  Google Scholar

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.  Google Scholar

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.  Google Scholar

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.  Google Scholar

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.  Google Scholar

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.   Google Scholar

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.  Google Scholar

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.  Google Scholar

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.  Google Scholar

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.  Google Scholar

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.  Google Scholar

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.  Google Scholar

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.  Google Scholar

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.  Google Scholar

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.  Google Scholar

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.  Google Scholar

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.  Google Scholar

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.  Google Scholar

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.  Google Scholar

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.  Google Scholar

Figure 1.  The image of an integral kernel $ K $ with the Mexican hat profile on $ {\mathbb{R}} $
Figure 2.  The images of localized patterns. (a) Pulse solution when $ P^{+} = P^{-} = \mathit{\boldsymbol{0}} $. (b) Front solution when $ n = 1 $ and $ P^{+}>P^{-} $
Figure 3.  The image of $ P(z;\mathit{\boldsymbol{h}}) $ when $ N = 2 $
Figure 4.  The image of $ P(z;\mathit{\boldsymbol{h}}) $. (a) $ (N^+, N^-) = (1,1) $. (b) $ (N^+, N^-) = (2,1) $
Figure 5.  The image of the interaction of two standing fronts, when the kernel is a non-negative function
Figure 6.  (a) The graph of (30) when $ \varepsilon = 0.01,\ q_1 = 1.0,\ q_2 = 2.0 $. (b) The graph of $ G(\lambda) $ when $ d = 1.0 $, $ f'(1) = -1 $ and the integral kernel is same as Figure 6 (a)
Figure 7.  (a) The numerical solution of $ (2) $ on the interval $ (0,40) $ when $ t = 100.0 $, where $ f(u) = \frac{1}{2}u(1-u^2) $ and the other parameters are same as that in >Figure 6. (b) The graph of $ \log|u(t,x)-1| $ on the interval $ (20,35) $ when $ t = 100.0 $, where $ u(t,x) $ is the numerical solution of $ (2) $
[1]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[2]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[3]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[4]

Gladis Torres-Espino, Claudio Vidal. Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4523-4547. doi: 10.3934/dcdsb.2020301

[5]

Francesco S. Patacchini, Dejan Slepčev. The nonlocal-interaction equation near attracting manifolds. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021142

[6]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[7]

Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations & Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036

[8]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[9]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[10]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[11]

Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 277-300. doi: 10.3934/dcdsb.2021042

[12]

José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209

[13]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[14]

Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135

[15]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[16]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[17]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[18]

Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006

[19]

Karl Peter Hadeler, Shigui Ruan. Interaction of diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 95-105. doi: 10.3934/dcdsb.2007.8.95

[20]

Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (279)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]