doi: 10.3934/dcdsb.2020332

Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control

1. 

Department of Mathematics, Harbin Institute of Technology(Weihai), Weihai 264209, China

2. 

Department of Basic Course, Xingtai Polytechnic College, Xingtai 054000, China

* Corresponding author: Xiaoling Zou

Received  November 2019 Revised  June 2020 Published  November 2020

As we all know, "summer fishing moratorium" is an internationally recognized management measure of fishery, which can protect stock of fish and promote the balance of marine ecology. In this paper, "intermittent control" is used to simulate this management strategy, which is the first attempt in theoretical analysis and the intermittence fits perfectly the moratorium. As an application, a stochastic two-prey one-predator Lotka-Volterra model with intermittent capture is considered. Modeling ideas and analytical skills in this paper can also be used to other stochastic models. In order to deal with intermittent capture in stochastic model, a new time-averaged objective function is proposed. Besides, the corresponding optimal harvesting strategies are obtained by using the equivalent method (equivalency between time-average and expectation). Theoretical results show that intermittent capture can affect the optimal harvesting effort, but it cannot change the corresponding optimal time-averaged yield, which are accord with observations. Finally, the results are illustrated by practical examples of marine fisheries and numerical simulations.

Citation: Xiaoling Zou, Yuting Zheng. Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020332
References:
[1]

L. J. S. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biocsi., 163 (2000), 1-33.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[2]

L. H. R. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation, Math. Biosci., 152 (1998), 63-85.  doi: 10.1016/S0025-5564(98)10018-4.  Google Scholar

[3]

L. H. R. Alvarez and L. A. Shepp, Optimal harvesting of stochastically fluctuating populations, Journal of Mathematical Biology, 37 (1998), 155-177.  doi: 10.1007/s002850050124.  Google Scholar

[4]

I. Barbǎlat, Système d'équations différentielles d'oscillations non linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[5]

J. BatsleerA. D. RijnsdorpK. G. HamonH. M. J. van Overzee and J. J. Poos, Mixed fisheries management: Is the ban on discarding likely to promote more selective and fuel efficient fishing in the dutch flatfish fishery?, Fish Res., 174 (2016), 118-128.  doi: 10.1016/j.fishres.2015.09.006.  Google Scholar

[6]

J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465.  doi: 10.1126/science.197.4302.463.  Google Scholar

[7]

A. BottaroY. YasutakeT. NomuraM. Casadio and P. Morasso, Bounded stability of the quiet standing posture: An intermittent control model, Hum. Movement Sci., 27 (2008), 473-495.  doi: 10.1016/j.humov.2007.11.005.  Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics. The Optimal Management of Renewable Resources, , Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976.  Google Scholar

[9]

J. H. Connell, On the prevalence and relative importance of interspecific competition: Evidence from field experiments, Am. Nat., 122 (1983), 661-696.  doi: 10.1086/284165.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[11]

J.-M. EcoutinM. SimierJ.-J. AlbaretR. LaëJ. RaffrayO. Sadio and L. T. de Morais, Ecological field experiment of short-term effects of fishing ban on fish assemblages in a tropical estuarine mpa, Ocean Coastal Manage., 100 (2014), 74-85.  doi: 10.1016/j.ocecoaman.2014.08.009.  Google Scholar

[12]

B. $\emptyset$ksendal, Stochastic Differential Equations, Springer-Verlag, 1985. doi: 10.1007/978-3-662-13050-6.  Google Scholar

[13]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation sis epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[14]

Y. GuoW. Zhao and X. Ding, Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, Appl. Math. Comput., 343 (2019), 114-127.  doi: 10.1016/j.amc.2018.07.058.  Google Scholar

[15]

S. Hong and N. Hong, H$^{\infty}$ switching synchronization for multiple time-delay chaotic systems subject to controller failure and its application to aperiodically intermittent control, Nonlinear Dyn., 92 (2018), 869-883.   Google Scholar

[16]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391.  doi: 10.1088/0951-7715/23/10/002.  Google Scholar

[17]

Z. Y. Huang, A comparison theorem for solutions of stochastic differential equations and its applications, Proc. Amer. Math. Soc., 91 (1984), 611-617.  doi: 10.1090/S0002-9939-1984-0746100-9.  Google Scholar

[18]

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26-53.  doi: 10.1016/j.jde.2005.06.017.  Google Scholar

[19]

B. JohnsonR. NarayanakumarP. S. SwathilekshmiR. Geetha and C. Ramachandran, Economic performance of motorised and non-mechanised fishing methods during and after-ban period in ramanathapuram district of tamil nadu, Indian J. Fish., 64 (2017), 160-165.  doi: 10.21077/ijf.2017.64.special-issue.76248-22.  Google Scholar

[20]

G. B. Kallianpur, Stochastic differential equations and diffusion processes, Technometrics, 25 (1983), 208. doi: 10.1080/00401706.1983.10487861.  Google Scholar

[21]

W. Li and K. Wang, Optimal harvesting policy for stochastic logistic population model, Appl. Math. Comput., 218 (2011), 157-162.  doi: 10.1016/j.amc.2011.05.079.  Google Scholar

[22]

M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., 23 (2013), 751-775.  doi: 10.1007/s00332-013-9167-4.  Google Scholar

[23]

O. Ovaskainen and B. Meerson, Stochastic models of population extinction, Trends Ecol. Evol., 25 (2010), 643-652.  doi: 10.1016/j.tree.2010.07.009.  Google Scholar

[24]

N.-T. ShihY.-H. Cai and I.-H. Ni, A concept to protect fisheries recruits by seasonal closure during spawning periods for commercial fishes off taiwan and the east china sea, J. Appl. Ichthyol., 25 (2009), 676-685.  doi: 10.1111/j.1439-0426.2009.01328.x.  Google Scholar

[25]

L. WangD. Jiang and G. S. K. Wolkowicz, Global asymptotic behavior of a multi-species stochastic chemostat model with discrete delays, J. Dyn. Differ. Equ., 32 (2020), 849-872.  doi: 10.1007/s10884-019-09741-6.  Google Scholar

[26]

W. Xia and J. Cao, Pinning synchronization of delayed dynamical networks via periodically intermittent control, Chaos, 19 (2009), 013120, 8pp. doi: 10.1063/1.3071933.  Google Scholar

[27]

B. Yang, Y. Cai, K. Wang and W. Wang, Optimal harvesting policy of logistic population model in a randomly fluctuating environment, Phys. A, 526 (2019), 120817, 17pp. doi: 10.1016/j.physa.2019.04.053.  Google Scholar

[28]

Y. Ye, Assessing effects of closed seasons in tropical and subtropical penaeid shrimp fisheries using a length-based yield-per-recruit model, ICES J. Mar. Sci., 55 (1998), 1112-1124.  doi: 10.1006/jmsc.1998.0415.  Google Scholar

[29]

C. ZhangW. Li and K. Wang, Graph-theoretic method on exponential synchronization of stochastic coupled networks with Markovian switching, Nonlinear Anal-Hybri., 15 (2015), 37-51.  doi: 10.1016/j.nahs.2014.07.003.  Google Scholar

[30]

G. Zhang and Y. Shen, Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control, Neural Networks, 55 (2014), 1-10.  doi: 10.1016/j.neunet.2014.03.009.  Google Scholar

[31]

X. Zou and K. Wang, Optimal harvesting for a stochastic lotka-volterra predator-prey system with jumps and nonselective harvesting hypothesis, Optim. Control Appl. Methods., 37 (2016), 641-662.  doi: 10.1002/oca.2185.  Google Scholar

[32]

X. Zou and K. Wang, Optimal harvesting for a stochastic n-dimensional competitive lotka-volterra model with jumps, Discrete Cont. Dyn-B, 20 (2015), 683-701.  doi: 10.3934/dcdsb.2015.20.683.  Google Scholar

[33]

X. Zou, Y. Zheng, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type II predator-prey model, Commun. Nonlinear Sci Numer. Simulat., 83 (2020), 105136, 20 pp. doi: 10.1016/j.cnsns.2019.105136.  Google Scholar

show all references

References:
[1]

L. J. S. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biocsi., 163 (2000), 1-33.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[2]

L. H. R. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation, Math. Biosci., 152 (1998), 63-85.  doi: 10.1016/S0025-5564(98)10018-4.  Google Scholar

[3]

L. H. R. Alvarez and L. A. Shepp, Optimal harvesting of stochastically fluctuating populations, Journal of Mathematical Biology, 37 (1998), 155-177.  doi: 10.1007/s002850050124.  Google Scholar

[4]

I. Barbǎlat, Système d'équations différentielles d'oscillations non linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[5]

J. BatsleerA. D. RijnsdorpK. G. HamonH. M. J. van Overzee and J. J. Poos, Mixed fisheries management: Is the ban on discarding likely to promote more selective and fuel efficient fishing in the dutch flatfish fishery?, Fish Res., 174 (2016), 118-128.  doi: 10.1016/j.fishres.2015.09.006.  Google Scholar

[6]

J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465.  doi: 10.1126/science.197.4302.463.  Google Scholar

[7]

A. BottaroY. YasutakeT. NomuraM. Casadio and P. Morasso, Bounded stability of the quiet standing posture: An intermittent control model, Hum. Movement Sci., 27 (2008), 473-495.  doi: 10.1016/j.humov.2007.11.005.  Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics. The Optimal Management of Renewable Resources, , Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976.  Google Scholar

[9]

J. H. Connell, On the prevalence and relative importance of interspecific competition: Evidence from field experiments, Am. Nat., 122 (1983), 661-696.  doi: 10.1086/284165.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511662829.  Google Scholar
[11]

J.-M. EcoutinM. SimierJ.-J. AlbaretR. LaëJ. RaffrayO. Sadio and L. T. de Morais, Ecological field experiment of short-term effects of fishing ban on fish assemblages in a tropical estuarine mpa, Ocean Coastal Manage., 100 (2014), 74-85.  doi: 10.1016/j.ocecoaman.2014.08.009.  Google Scholar

[12]

B. $\emptyset$ksendal, Stochastic Differential Equations, Springer-Verlag, 1985. doi: 10.1007/978-3-662-13050-6.  Google Scholar

[13]

A. GrayD. GreenhalghL. HuX. Mao and J. Pan, A stochastic differential equation sis epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.  doi: 10.1137/10081856X.  Google Scholar

[14]

Y. GuoW. Zhao and X. Ding, Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, Appl. Math. Comput., 343 (2019), 114-127.  doi: 10.1016/j.amc.2018.07.058.  Google Scholar

[15]

S. Hong and N. Hong, H$^{\infty}$ switching synchronization for multiple time-delay chaotic systems subject to controller failure and its application to aperiodically intermittent control, Nonlinear Dyn., 92 (2018), 869-883.   Google Scholar

[16]

C. HuJ. YuH. Jiang and Z. Teng, Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity, 23 (2010), 2369-2391.  doi: 10.1088/0951-7715/23/10/002.  Google Scholar

[17]

Z. Y. Huang, A comparison theorem for solutions of stochastic differential equations and its applications, Proc. Amer. Math. Soc., 91 (1984), 611-617.  doi: 10.1090/S0002-9939-1984-0746100-9.  Google Scholar

[18]

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26-53.  doi: 10.1016/j.jde.2005.06.017.  Google Scholar

[19]

B. JohnsonR. NarayanakumarP. S. SwathilekshmiR. Geetha and C. Ramachandran, Economic performance of motorised and non-mechanised fishing methods during and after-ban period in ramanathapuram district of tamil nadu, Indian J. Fish., 64 (2017), 160-165.  doi: 10.21077/ijf.2017.64.special-issue.76248-22.  Google Scholar

[20]

G. B. Kallianpur, Stochastic differential equations and diffusion processes, Technometrics, 25 (1983), 208. doi: 10.1080/00401706.1983.10487861.  Google Scholar

[21]

W. Li and K. Wang, Optimal harvesting policy for stochastic logistic population model, Appl. Math. Comput., 218 (2011), 157-162.  doi: 10.1016/j.amc.2011.05.079.  Google Scholar

[22]

M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., 23 (2013), 751-775.  doi: 10.1007/s00332-013-9167-4.  Google Scholar

[23]

O. Ovaskainen and B. Meerson, Stochastic models of population extinction, Trends Ecol. Evol., 25 (2010), 643-652.  doi: 10.1016/j.tree.2010.07.009.  Google Scholar

[24]

N.-T. ShihY.-H. Cai and I.-H. Ni, A concept to protect fisheries recruits by seasonal closure during spawning periods for commercial fishes off taiwan and the east china sea, J. Appl. Ichthyol., 25 (2009), 676-685.  doi: 10.1111/j.1439-0426.2009.01328.x.  Google Scholar

[25]

L. WangD. Jiang and G. S. K. Wolkowicz, Global asymptotic behavior of a multi-species stochastic chemostat model with discrete delays, J. Dyn. Differ. Equ., 32 (2020), 849-872.  doi: 10.1007/s10884-019-09741-6.  Google Scholar

[26]

W. Xia and J. Cao, Pinning synchronization of delayed dynamical networks via periodically intermittent control, Chaos, 19 (2009), 013120, 8pp. doi: 10.1063/1.3071933.  Google Scholar

[27]

B. Yang, Y. Cai, K. Wang and W. Wang, Optimal harvesting policy of logistic population model in a randomly fluctuating environment, Phys. A, 526 (2019), 120817, 17pp. doi: 10.1016/j.physa.2019.04.053.  Google Scholar

[28]

Y. Ye, Assessing effects of closed seasons in tropical and subtropical penaeid shrimp fisheries using a length-based yield-per-recruit model, ICES J. Mar. Sci., 55 (1998), 1112-1124.  doi: 10.1006/jmsc.1998.0415.  Google Scholar

[29]

C. ZhangW. Li and K. Wang, Graph-theoretic method on exponential synchronization of stochastic coupled networks with Markovian switching, Nonlinear Anal-Hybri., 15 (2015), 37-51.  doi: 10.1016/j.nahs.2014.07.003.  Google Scholar

[30]

G. Zhang and Y. Shen, Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control, Neural Networks, 55 (2014), 1-10.  doi: 10.1016/j.neunet.2014.03.009.  Google Scholar

[31]

X. Zou and K. Wang, Optimal harvesting for a stochastic lotka-volterra predator-prey system with jumps and nonselective harvesting hypothesis, Optim. Control Appl. Methods., 37 (2016), 641-662.  doi: 10.1002/oca.2185.  Google Scholar

[32]

X. Zou and K. Wang, Optimal harvesting for a stochastic n-dimensional competitive lotka-volterra model with jumps, Discrete Cont. Dyn-B, 20 (2015), 683-701.  doi: 10.3934/dcdsb.2015.20.683.  Google Scholar

[33]

X. Zou, Y. Zheng, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type II predator-prey model, Commun. Nonlinear Sci Numer. Simulat., 83 (2020), 105136, 20 pp. doi: 10.1016/j.cnsns.2019.105136.  Google Scholar

Figure 1.  Numerical simulations for sample paths
Figure 2.  Numerical simulations for time average
Figure 3.  The effects of intermittent control in one-dimensional situation
[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (12)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]