doi: 10.3934/dcdsb.2020333

Traveling wave solutions for a cancer stem cell invasion model

1. 

University of Michigan, 540 Thompson Street, Ann Arbor, MI 48104, USA

2. 

Department of Mathematics, Kennesaw State University, 850 Polytechnic Lane, Marietta, GA 30060, USA

*Corresponding author: E. Stachura

Received  December 2019 Revised  September 2020 Published  November 2020

In this paper we analyze the dynamics of a cancer invasion model that incorporates the cancer stem cell hypothesis. In particular, we develop a model that includes a cancer stem cell subpopulation of tumor cells. Traveling wave analysis and Geometric Singular Perturbation Theory are used in order to determine existence and persistence of solutions for the model.

Citation: Caleb Mayer, Eric Stachura. Traveling wave solutions for a cancer stem cell invasion model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020333
References:
[1]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher–KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience, 1962.  Google Scholar

[3]

P. DomschkeA. GerischM. A. J. Chaplain and D. Trucu, Structured models of cell migration incorporating molecular binding processes, Journal of Mathematical Biology, 75 (2017), 1517-1561.  doi: 10.1007/s00285-017-1120-y.  Google Scholar

[4]

A. FasanoA. Mancini and M. Primicerio, Tumours with cancer stem cells: A PDE model, Mathematical Biosciences, 272 (2016), 76-80.  doi: 10.1016/j.mbs.2015.12.003.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

A. GhazaryanP. Gordon and C. K. R. T. Jones, Traveling waves in porous media combustion: Uniqueness of waves for small thermal diffusivity, Journal of Dynamics and Differential Equations, 19 (2007), 951-966.  doi: 10.1007/s10884-007-9079-9.  Google Scholar

[7]

K. HarleyP. van HeijsterR. MarangellG. J. Pettet and M. Wechselberger, Existence of traveling wave solutions for a model of tumor invasion, SIAM Journal on Applied Dynamical Systems, 13 (2014), 366-396.  doi: 10.1137/130923129.  Google Scholar

[8]

K. HarleyP. van Heijster and G. J. Pettet, A geometric construction of travelling wave solutions to the Keller–Segel model, ANZIAM Journal, 55 (2013), 399-415.   Google Scholar

[9]

G. Hek, Geometric singular perturbation theory in biological practice, Journal of Mathematical Biology, 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. IslamB. QiaoR. A. SmithV. Gopalan and A. K.-Y. Lam, Cancer stem cell: Fundamental experimental pathological concepts and updates, Experimental and Molecular Pathology, 98 (2015), 184-191.  doi: 10.1016/j.yexmp.2015.02.002.  Google Scholar

[11]

H. Jardón-Kojakhmetov, J. M. A. Scherpen and D. del Puerto-Flores, Stabilization of slow-fast systems at fold points, arXiv: 1704.05654. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems, Springer, 1995, 44–118. doi: 10.1007/BFb0095239.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM Journal on Applied Mathematics, 34 (1978), 93-103.  doi: 10.1137/0134008.  Google Scholar

[15]

J. D. Lathia and H. Liu, Overview of cancer stem cells and stemness for community oncologists, Targeted Oncology, 12 (2017), 387-399.  doi: 10.1007/s11523-017-0508-3.  Google Scholar

[16]

M.-R. Li, Y.-J. Lin and T.-H. Shieh, The space-jump model of the movement of tumor cells and healthy cells, in Abstract and Applied Analysis, 2014 (2014), 840891, 7pp. doi: 10.1155/2014/840891.  Google Scholar

[17]

L. Liotta, Tumor invasion and metastases–role of the extracellular matrix: Rhodes memorial award lecture, Cancer Research, 46 (1986), 1-7.   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Communications on Pure and Applied Mathematics, 28 (1975), 323-331.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

R. NataliniM. Ribot and M. Twarogowska, A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, Journal of Scientific Computing, 63 (2015), 654-677.  doi: 10.1007/s10915-014-9909-y.  Google Scholar

[20]

J. D. O'FlahertyM. BarrD. FennellD. RichardJ. ReynoldsJ. O'Leary and K. O'Byrne, The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy, Journal of Thoracic Oncology, 7 (2012), 1880-1890.  doi: 10.1097/JTO.0b013e31826bfbc6.  Google Scholar

[21]

K. J. Painter, Modelling cell migration strategies in the extracellular matrix, Journal of Mathematical Biology, 58 (2009), 511-543.  doi: 10.1007/s00285-008-0217-8.  Google Scholar

[22]

A. J. PerumpananiB. P. Marchant and J. Norbury, Traveling shock waves arising in a model of malignant invasion, SIAM Journal on Applied Mathematics, 60 (2000), 463-476.  doi: 10.1137/S0036139998328034.  Google Scholar

[23]

A. J. PerumpananiJ. A. SherrattJ. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D: Nonlinear Phenomena, 126 (1999), 145-159.  doi: 10.1016/S0167-2789(98)00272-3.  Google Scholar

[24]

R. J. PetrieA. D. Doyle and K. M. Yamada, Random versus directionally persistent cell migration, Nature Reviews Molecular Cell Biology, 10 (2009), 538-549.  doi: 10.1038/nrm2729.  Google Scholar

[25]

T. ReyaS. J. MorrisonM. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111.  doi: 10.1038/35102167.  Google Scholar

[26]

N. SfakianakisN. KolbeN. Hellmann and M. Lukávčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bulletin of Mathematical Biology, 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.  Google Scholar

[27]

W. G. Stetler-StevensonS. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Annual Review of Cell Biology, 9 (1993), 541-573.  doi: 10.1146/annurev.cb.09.110193.002545.  Google Scholar

[28]

T. Stiehl, N. Baran, A. D. Ho and A. Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, Journal of The Royal Society Interface, 11 (2014), 20140079. doi: 10.1098/rsif.2014.0079.  Google Scholar

[29]

T. Stiehl and A. Marciniak-Czochra, Stem cell self-renewal in regeneration and cancer: Insights from mathematical modeling, Current Opinion in Systems Biology, 5 (2017), 112-120.  doi: 10.1016/j.coisb.2017.09.006.  Google Scholar

[30]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of Differential Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[31]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Differential Equations, 177 (2001), 419-453.  doi: 10.1006/jdeq.2001.4001.  Google Scholar

[32]

A. Toma, A. Mang, T. A. Schuetz, S. Becker and T. M. Buzug, A novel method for simulating the extracellular matrix in models of tumour growth, Computational and Mathematical Methods in Medicine, (2012), Art. ID 109019, 11 pp. doi: 10.1155/2012/109019.  Google Scholar

[33]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, International Journal of Bio-Medical Computing, 13 (1982), 19-35.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[34]

L. WangC. MuX. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Mathematical Methods in the Applied Sciences, 40 (2017), 3000-3016.  doi: 10.1002/mma.4216.  Google Scholar

[35]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis–review paper, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[36]

M. Wechselberger, Àpropos de canards (Apropos canards), Transactions of the American Mathematical Society, 364 (2012), 3289-3309.  doi: 10.1090/S0002-9947-2012-05575-9.  Google Scholar

[37]

M. Wechselberger and G. J. Pettet, Folds, canards and shocks in advection–reaction–diffusion models, Nonlinearity, 23 (2010), 1949-1969.  doi: 10.1088/0951-7715/23/8/008.  Google Scholar

[38]

A. ZagarisH. G. Kaper and T. J. Kaper, Fast and slow dynamics for the computational singular perturbation method, Multiscale Modeling & Simulation, 2 (2004), 613-638.  doi: 10.1137/040603577.  Google Scholar

[39]

A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Zeitschrift Für Angewandte Mathematik und Physik, 67 (2016), Art. 146, 29 pp. doi: 10.1007/s00033-016-0741-0.  Google Scholar

show all references

References:
[1]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher–KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience, 1962.  Google Scholar

[3]

P. DomschkeA. GerischM. A. J. Chaplain and D. Trucu, Structured models of cell migration incorporating molecular binding processes, Journal of Mathematical Biology, 75 (2017), 1517-1561.  doi: 10.1007/s00285-017-1120-y.  Google Scholar

[4]

A. FasanoA. Mancini and M. Primicerio, Tumours with cancer stem cells: A PDE model, Mathematical Biosciences, 272 (2016), 76-80.  doi: 10.1016/j.mbs.2015.12.003.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

A. GhazaryanP. Gordon and C. K. R. T. Jones, Traveling waves in porous media combustion: Uniqueness of waves for small thermal diffusivity, Journal of Dynamics and Differential Equations, 19 (2007), 951-966.  doi: 10.1007/s10884-007-9079-9.  Google Scholar

[7]

K. HarleyP. van HeijsterR. MarangellG. J. Pettet and M. Wechselberger, Existence of traveling wave solutions for a model of tumor invasion, SIAM Journal on Applied Dynamical Systems, 13 (2014), 366-396.  doi: 10.1137/130923129.  Google Scholar

[8]

K. HarleyP. van Heijster and G. J. Pettet, A geometric construction of travelling wave solutions to the Keller–Segel model, ANZIAM Journal, 55 (2013), 399-415.   Google Scholar

[9]

G. Hek, Geometric singular perturbation theory in biological practice, Journal of Mathematical Biology, 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. IslamB. QiaoR. A. SmithV. Gopalan and A. K.-Y. Lam, Cancer stem cell: Fundamental experimental pathological concepts and updates, Experimental and Molecular Pathology, 98 (2015), 184-191.  doi: 10.1016/j.yexmp.2015.02.002.  Google Scholar

[11]

H. Jardón-Kojakhmetov, J. M. A. Scherpen and D. del Puerto-Flores, Stabilization of slow-fast systems at fold points, arXiv: 1704.05654. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems, Springer, 1995, 44–118. doi: 10.1007/BFb0095239.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM Journal on Applied Mathematics, 34 (1978), 93-103.  doi: 10.1137/0134008.  Google Scholar

[15]

J. D. Lathia and H. Liu, Overview of cancer stem cells and stemness for community oncologists, Targeted Oncology, 12 (2017), 387-399.  doi: 10.1007/s11523-017-0508-3.  Google Scholar

[16]

M.-R. Li, Y.-J. Lin and T.-H. Shieh, The space-jump model of the movement of tumor cells and healthy cells, in Abstract and Applied Analysis, 2014 (2014), 840891, 7pp. doi: 10.1155/2014/840891.  Google Scholar

[17]

L. Liotta, Tumor invasion and metastases–role of the extracellular matrix: Rhodes memorial award lecture, Cancer Research, 46 (1986), 1-7.   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Communications on Pure and Applied Mathematics, 28 (1975), 323-331.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

R. NataliniM. Ribot and M. Twarogowska, A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, Journal of Scientific Computing, 63 (2015), 654-677.  doi: 10.1007/s10915-014-9909-y.  Google Scholar

[20]

J. D. O'FlahertyM. BarrD. FennellD. RichardJ. ReynoldsJ. O'Leary and K. O'Byrne, The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy, Journal of Thoracic Oncology, 7 (2012), 1880-1890.  doi: 10.1097/JTO.0b013e31826bfbc6.  Google Scholar

[21]

K. J. Painter, Modelling cell migration strategies in the extracellular matrix, Journal of Mathematical Biology, 58 (2009), 511-543.  doi: 10.1007/s00285-008-0217-8.  Google Scholar

[22]

A. J. PerumpananiB. P. Marchant and J. Norbury, Traveling shock waves arising in a model of malignant invasion, SIAM Journal on Applied Mathematics, 60 (2000), 463-476.  doi: 10.1137/S0036139998328034.  Google Scholar

[23]

A. J. PerumpananiJ. A. SherrattJ. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D: Nonlinear Phenomena, 126 (1999), 145-159.  doi: 10.1016/S0167-2789(98)00272-3.  Google Scholar

[24]

R. J. PetrieA. D. Doyle and K. M. Yamada, Random versus directionally persistent cell migration, Nature Reviews Molecular Cell Biology, 10 (2009), 538-549.  doi: 10.1038/nrm2729.  Google Scholar

[25]

T. ReyaS. J. MorrisonM. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111.  doi: 10.1038/35102167.  Google Scholar

[26]

N. SfakianakisN. KolbeN. Hellmann and M. Lukávčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bulletin of Mathematical Biology, 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.  Google Scholar

[27]

W. G. Stetler-StevensonS. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Annual Review of Cell Biology, 9 (1993), 541-573.  doi: 10.1146/annurev.cb.09.110193.002545.  Google Scholar

[28]

T. Stiehl, N. Baran, A. D. Ho and A. Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, Journal of The Royal Society Interface, 11 (2014), 20140079. doi: 10.1098/rsif.2014.0079.  Google Scholar

[29]

T. Stiehl and A. Marciniak-Czochra, Stem cell self-renewal in regeneration and cancer: Insights from mathematical modeling, Current Opinion in Systems Biology, 5 (2017), 112-120.  doi: 10.1016/j.coisb.2017.09.006.  Google Scholar

[30]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of Differential Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[31]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Differential Equations, 177 (2001), 419-453.  doi: 10.1006/jdeq.2001.4001.  Google Scholar

[32]

A. Toma, A. Mang, T. A. Schuetz, S. Becker and T. M. Buzug, A novel method for simulating the extracellular matrix in models of tumour growth, Computational and Mathematical Methods in Medicine, (2012), Art. ID 109019, 11 pp. doi: 10.1155/2012/109019.  Google Scholar

[33]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, International Journal of Bio-Medical Computing, 13 (1982), 19-35.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[34]

L. WangC. MuX. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Mathematical Methods in the Applied Sciences, 40 (2017), 3000-3016.  doi: 10.1002/mma.4216.  Google Scholar

[35]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis–review paper, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[36]

M. Wechselberger, Àpropos de canards (Apropos canards), Transactions of the American Mathematical Society, 364 (2012), 3289-3309.  doi: 10.1090/S0002-9947-2012-05575-9.  Google Scholar

[37]

M. Wechselberger and G. J. Pettet, Folds, canards and shocks in advection–reaction–diffusion models, Nonlinearity, 23 (2010), 1949-1969.  doi: 10.1088/0951-7715/23/8/008.  Google Scholar

[38]

A. ZagarisH. G. Kaper and T. J. Kaper, Fast and slow dynamics for the computational singular perturbation method, Multiscale Modeling & Simulation, 2 (2004), 613-638.  doi: 10.1137/040603577.  Google Scholar

[39]

A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Zeitschrift Für Angewandte Mathematik und Physik, 67 (2016), Art. 146, 29 pp. doi: 10.1007/s00033-016-0741-0.  Google Scholar

Figure 1.  Profile of traveling wave solution at $ t = 50 $. The qualitative behavior is similar to the results presented in [7] and [22] for only one invasive cell population, the latter reference taking $ \epsilon = 0 $ in their analysis
Figure 2.  Solution profile of (49)-(51) with wavespeed $ c = 1.5 $, $ u^* = 1 $, and $ w^* = 0.6 $
[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[5]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[11]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]