-
Previous Article
Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions for a cancer stem cell invasion model
Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity
School of Mathematics, Liaoning Normal University, Dalian 116029, China |
We consider a chemotaxis system with singular sensitivity and logistic-type source: $ u_t = \Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+ru-\mu u^k $, $ v_t = \epsilon\Delta v-v+u $ in a smooth bounded domain $ \Omega\subset\mathbb{R}^n $ with $ \chi,r,\mu,\epsilon>0 $, $ k>1 $ and $ n\ge 2 $. It is proved that the system possesses a globally bounded classical solution when $ \epsilon+\chi<1 $. This shows that the diffusive coefficient $ \epsilon $ of the chemical substance $ v $ properly small benefits the global boundedness of solutions, without the restriction on the dampening exponent $ k>1 $ in logistic source.
References:
[1] |
J. Ahn,
Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, J. Differential Equations, 266 (2019), 6866-6904.
doi: 10.1016/j.jde.2018.11.015. |
[2] |
M. Aida, K. Osaka, T. Tsujikawa and A. Yagi,
Chemotaxis and growth system with sigular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011. |
[3] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[4] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.
![]() |
[5] |
M. Ding, W. Wang and S. Zhou,
Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.
doi: 10.1016/j.nonrwa.2019.03.009. |
[6] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[7] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[8] |
K. Fujie, M. Winkler and T. Yokota,
Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017. |
[9] |
A. Friedman and J. I. Tello,
Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[10] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[11] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 33pp. |
[12] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[13] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469.
|
[14] |
C. Stinner and M. Winkler,
Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
|
[15] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[16] |
X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., (2017), 68. |
[17] |
X. D. Zhao and S. Zheng,
Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.
doi: 10.1016/j.jde.2019.01.026. |
[18] |
X. D. Zhao and S. Zheng,
Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Math. Methods. Appl. Sci., 41 (2018), 2615-2624.
doi: 10.1002/mma.4762. |
show all references
References:
[1] |
J. Ahn,
Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, J. Differential Equations, 266 (2019), 6866-6904.
doi: 10.1016/j.jde.2018.11.015. |
[2] |
M. Aida, K. Osaka, T. Tsujikawa and A. Yagi,
Chemotaxis and growth system with sigular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011. |
[3] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[4] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.
![]() |
[5] |
M. Ding, W. Wang and S. Zhou,
Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.
doi: 10.1016/j.nonrwa.2019.03.009. |
[6] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[7] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[8] |
K. Fujie, M. Winkler and T. Yokota,
Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017. |
[9] |
A. Friedman and J. I. Tello,
Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[10] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[11] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 33pp. |
[12] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[13] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469.
|
[14] |
C. Stinner and M. Winkler,
Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
|
[15] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[16] |
X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., (2017), 68. |
[17] |
X. D. Zhao and S. Zheng,
Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.
doi: 10.1016/j.jde.2019.01.026. |
[18] |
X. D. Zhao and S. Zheng,
Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Math. Methods. Appl. Sci., 41 (2018), 2615-2624.
doi: 10.1002/mma.4762. |
[1] |
Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 |
[2] |
Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170 |
[3] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[4] |
Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045 |
[5] |
Jie Zhao. A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3487-3513. doi: 10.3934/dcdsb.2021193 |
[6] |
Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097 |
[7] |
Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 |
[8] |
Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503 |
[9] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[10] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[11] |
Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216 |
[12] |
Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231 |
[13] |
Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705 |
[14] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[15] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6155-6171. doi: 10.3934/dcdsb.2021011 |
[16] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 |
[17] |
Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 |
[18] |
Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132 |
[19] |
Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 |
[20] |
Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]