-
Previous Article
Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay
- DCDS-B Home
- This Issue
-
Next Article
Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays
Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity
School of Mathematics, Liaoning Normal University, Dalian 116029, China |
We consider a chemotaxis system with singular sensitivity and logistic-type source: $ u_t = \Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+ru-\mu u^k $, $ v_t = \epsilon\Delta v-v+u $ in a smooth bounded domain $ \Omega\subset\mathbb{R}^n $ with $ \chi,r,\mu,\epsilon>0 $, $ k>1 $ and $ n\ge 2 $. It is proved that the system possesses a globally bounded classical solution when $ \epsilon+\chi<1 $. This shows that the diffusive coefficient $ \epsilon $ of the chemical substance $ v $ properly small benefits the global boundedness of solutions, without the restriction on the dampening exponent $ k>1 $ in logistic source.
References:
[1] |
J. Ahn,
Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, J. Differential Equations, 266 (2019), 6866-6904.
doi: 10.1016/j.jde.2018.11.015. |
[2] |
M. Aida, K. Osaka, T. Tsujikawa and A. Yagi,
Chemotaxis and growth system with sigular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011. |
[3] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[4] | J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. Google Scholar |
[5] |
M. Ding, W. Wang and S. Zhou,
Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.
doi: 10.1016/j.nonrwa.2019.03.009. |
[6] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[7] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[8] |
K. Fujie, M. Winkler and T. Yokota,
Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017. |
[9] |
A. Friedman and J. I. Tello,
Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[10] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[11] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 33pp. Google Scholar |
[12] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[13] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469. Google Scholar |
[14] |
C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740. Google Scholar |
[15] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[16] |
X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., (2017), 68. Google Scholar |
[17] |
X. D. Zhao and S. Zheng,
Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.
doi: 10.1016/j.jde.2019.01.026. |
[18] |
X. D. Zhao and S. Zheng,
Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Math. Methods. Appl. Sci., 41 (2018), 2615-2624.
doi: 10.1002/mma.4762. |
show all references
References:
[1] |
J. Ahn,
Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, J. Differential Equations, 266 (2019), 6866-6904.
doi: 10.1016/j.jde.2018.11.015. |
[2] |
M. Aida, K. Osaka, T. Tsujikawa and A. Yagi,
Chemotaxis and growth system with sigular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011. |
[3] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[4] | J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. Google Scholar |
[5] |
M. Ding, W. Wang and S. Zhou,
Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.
doi: 10.1016/j.nonrwa.2019.03.009. |
[6] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[7] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[8] |
K. Fujie, M. Winkler and T. Yokota,
Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017. |
[9] |
A. Friedman and J. I. Tello,
Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[10] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[11] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 33pp. Google Scholar |
[12] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[13] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469. Google Scholar |
[14] |
C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740. Google Scholar |
[15] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[16] |
X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., (2017), 68. Google Scholar |
[17] |
X. D. Zhao and S. Zheng,
Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.
doi: 10.1016/j.jde.2019.01.026. |
[18] |
X. D. Zhao and S. Zheng,
Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Math. Methods. Appl. Sci., 41 (2018), 2615-2624.
doi: 10.1002/mma.4762. |
[1] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[2] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[3] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[4] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[5] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[6] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[7] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[8] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[9] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[10] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]