doi: 10.3934/dcdsb.2020337

Recurrent solutions of the Schrödinger-KdV system with boundary forces

School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

Received  May 2020 Published  November 2020

Fund Project: This work is supported by NSFC Grant (11701078)

In this paper, we consider the Schrödinger-KdV system with time-dependent boundary external forces. We give conditions on the external forces sufficient for the unique existence of small solutions bounded for all time. Then, we investigate the existence of bounded solution, periodic solution, quasi-periodic solution and almost periodic solution for the Schrödinger-KdV system. The main difficulty is the nonlinear terms in the equations, in order to overcome this difficulty, we establish some properties for the semigroup associated with linear operator which is a crucial tool.

Citation: Mo Chen. Recurrent solutions of the Schrödinger-KdV system with boundary forces. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020337
References:
[1]

A. ArbietoA. Corcho and C. Matheus, Rough solutions for the periodic Schrödinger-Korteweg-de Vries system, J. Differential Equations, 230 (2006), 295-336.  doi: 10.1016/j.jde.2006.04.012.  Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Revista Matemática Complutense, 26 (2013), 409-426.  doi: 10.1007/s13163-012-0097-8.  Google Scholar

[3]

J. Albert and J. A. Pava, Existence and stability of ground-state solutions of a Schrödinger-KdV system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 987-1029.  doi: 10.1017/S030821050000278X.  Google Scholar

[4]

D. J. Benney, A general theory for interactions between short and long waves, Studies in Applied Mathematics, 56 (1977), 81-94.  doi: 10.1002/sapm197756181.  Google Scholar

[5]

D. BekiranovT. Ogawa and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907-2919.  doi: 10.1090/S0002-9939-97-03941-5.  Google Scholar

[6]

S. Bhattarai, Solitary waves and a stability analysis of an equation of short and long dispersive waves, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 6506-6519.  doi: 10.1016/j.na.2012.07.026.  Google Scholar

[7]

J. ChuJ. M. Coron and P. Shang, Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths, Journal of Differential Equations, 259 (2015), 4045-4085.  doi: 10.1016/j.jde.2015.05.010.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, A tribute to J. L. Lions, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[9]

V. V. ChepyzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst, 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

V. Chepyzhov and M. Vishik, Attractors for nonautonomous Navier-Stokes system and other partial differential equations, Instability in Models Connected with Fluid Flows I, 6 (2008), 135-265.  doi: 10.1007/978-0-387-75217-4_4.  Google Scholar

[11]

A. J. Corcho F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc., 359 (2007), 4089-4106.  doi: 10.1090/S0002-9947-07-04239-0.  Google Scholar

[12]

J. P. DiasM. Figueira and F. Oliveira, Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010), 2686-2698.  doi: 10.1016/j.na.2010.06.049.  Google Scholar

[13]

P. Gao, Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations, Mathematical Methods in the Applied Sciences, 41 (2018), 2769-2794.  doi: 10.1002/mma.4778.  Google Scholar

[14]

P. Gao, Recurrent solutions of the derivative Ginzburg-Landau equation with boundary forces, Applicable Analysis, 97 (2018), 2743-2761.  doi: 10.1080/00036811.2017.1387250.  Google Scholar

[15]

P. Gao and Y. Li, Averaging principle for the Schrödinger equations, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 2147-2168.  doi: 10.3934/dcdsb.2017089.  Google Scholar

[16]

A. Golbabai and A. Safdari-Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242.  doi: 10.1007/s00607-010-0138-4.  Google Scholar

[17]

B. Guo and C. Feng-Xin, Finite-dimensional behavior of global attractors for weakly damped and forced kdv equations coupling with nonlinear Schrödinger equations, Nonlinear Analysis: Theory, Methods & Applications, 29 (1997), 569-584.  doi: 10.1016/S0362-546X(96)00061-2.  Google Scholar

[18]

B. Guo and L. Shen, The periodic initial value problem and the initial value problem for the system of KdV equation coupling with nonlinear Schrödinger equations, Proceedings of DD-3 Symposium, Chang Chun, (1982), 417435. Google Scholar

[19]

Z. Guo and Y. Wang, On the well-posedness of the Schrödinger-Korteweg-de Vries system, Journal of Differential Equations, 249 (2010), 2500-2520.  doi: 10.1016/j.jde.2010.04.016.  Google Scholar

[20]

B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Mathematica Sinica, 15 (1999), 215-224.  doi: 10.1007/BF02650665.  Google Scholar

[21]

T. KawaharaN. Sugimoto and T. Kakutani, Nonlinear interaction between short and long capillary-gravity waves, Journal of the Physical Society of Japan, 39 (1975), 1379-1386.  doi: 10.1143/JPSJ.39.1379.  Google Scholar

[22]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol.I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, NewYork-Heidelberg, translated fromthe French by P.Kenneth, 1972.  Google Scholar

[23]

V. G. Makhankov, On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation, Physics Letters A, 50 (1974), 42-44.  doi: 10.1016/0375-9601(74)90344-2.  Google Scholar

[24]

K. Nishikawa, H. Hojo, K. Mima et al., Coupled nonlinear electron-plasma and ion-acoustic waves, Physical Review Letters, 33 (1974), 148. doi: 10.1103/PhysRevLett.33.148.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol.44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

J. A. Pava, Stability of solitary wave solutions for equations of short and long dispersive waves, Electronic Journal of Differential Equations, 72 (2006), 18p.  Google Scholar

[27]

G. Perla MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Applied Mathematics, 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[28]

L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[29]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: Control, Optimisation and Calculus of Variations, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[30]

M. Tsutsumi, Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation, Internat. Ser. Math. Sci. Appl., 2 (1993), 513-528.   Google Scholar

[31]

M. Usman and B. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Journal of Systems Science and Complexity, 20 (2007), 284-292.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[32]

H. Wang and S. Cui, The Cauchy problem for the Schrödinger-KdV system, Journal of Differential Equations, 250 (2011), 3559-3583.  doi: 10.1016/j.jde.2011.02.008.  Google Scholar

[33]

N. Yajima and J. Satsuma, Soliton solutions in a diatomic lattice system, Progress of Theoretical Physics, 62 (1979), 370-378.  doi: 10.1143/PTP.62.370.  Google Scholar

show all references

References:
[1]

A. ArbietoA. Corcho and C. Matheus, Rough solutions for the periodic Schrödinger-Korteweg-de Vries system, J. Differential Equations, 230 (2006), 295-336.  doi: 10.1016/j.jde.2006.04.012.  Google Scholar

[2]

P. Amorim and M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Revista Matemática Complutense, 26 (2013), 409-426.  doi: 10.1007/s13163-012-0097-8.  Google Scholar

[3]

J. Albert and J. A. Pava, Existence and stability of ground-state solutions of a Schrödinger-KdV system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 133 (2003), 987-1029.  doi: 10.1017/S030821050000278X.  Google Scholar

[4]

D. J. Benney, A general theory for interactions between short and long waves, Studies in Applied Mathematics, 56 (1977), 81-94.  doi: 10.1002/sapm197756181.  Google Scholar

[5]

D. BekiranovT. Ogawa and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907-2919.  doi: 10.1090/S0002-9939-97-03941-5.  Google Scholar

[6]

S. Bhattarai, Solitary waves and a stability analysis of an equation of short and long dispersive waves, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 6506-6519.  doi: 10.1016/j.na.2012.07.026.  Google Scholar

[7]

J. ChuJ. M. Coron and P. Shang, Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths, Journal of Differential Equations, 259 (2015), 4045-4085.  doi: 10.1016/j.jde.2015.05.010.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, A tribute to J. L. Lions, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 467-487.  doi: 10.1051/cocv:2002056.  Google Scholar

[9]

V. V. ChepyzhovM. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst, 12 (2005), 27-38.  doi: 10.3934/dcds.2005.12.27.  Google Scholar

[10]

V. Chepyzhov and M. Vishik, Attractors for nonautonomous Navier-Stokes system and other partial differential equations, Instability in Models Connected with Fluid Flows I, 6 (2008), 135-265.  doi: 10.1007/978-0-387-75217-4_4.  Google Scholar

[11]

A. J. Corcho F. Linares, Well-posedness for the Schrödinger-Korteweg-de Vries system, Trans. Amer. Math. Soc., 359 (2007), 4089-4106.  doi: 10.1090/S0002-9947-07-04239-0.  Google Scholar

[12]

J. P. DiasM. Figueira and F. Oliveira, Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010), 2686-2698.  doi: 10.1016/j.na.2010.06.049.  Google Scholar

[13]

P. Gao, Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations, Mathematical Methods in the Applied Sciences, 41 (2018), 2769-2794.  doi: 10.1002/mma.4778.  Google Scholar

[14]

P. Gao, Recurrent solutions of the derivative Ginzburg-Landau equation with boundary forces, Applicable Analysis, 97 (2018), 2743-2761.  doi: 10.1080/00036811.2017.1387250.  Google Scholar

[15]

P. Gao and Y. Li, Averaging principle for the Schrödinger equations, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 2147-2168.  doi: 10.3934/dcdsb.2017089.  Google Scholar

[16]

A. Golbabai and A. Safdari-Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225-242.  doi: 10.1007/s00607-010-0138-4.  Google Scholar

[17]

B. Guo and C. Feng-Xin, Finite-dimensional behavior of global attractors for weakly damped and forced kdv equations coupling with nonlinear Schrödinger equations, Nonlinear Analysis: Theory, Methods & Applications, 29 (1997), 569-584.  doi: 10.1016/S0362-546X(96)00061-2.  Google Scholar

[18]

B. Guo and L. Shen, The periodic initial value problem and the initial value problem for the system of KdV equation coupling with nonlinear Schrödinger equations, Proceedings of DD-3 Symposium, Chang Chun, (1982), 417435. Google Scholar

[19]

Z. Guo and Y. Wang, On the well-posedness of the Schrödinger-Korteweg-de Vries system, Journal of Differential Equations, 249 (2010), 2500-2520.  doi: 10.1016/j.jde.2010.04.016.  Google Scholar

[20]

B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Mathematica Sinica, 15 (1999), 215-224.  doi: 10.1007/BF02650665.  Google Scholar

[21]

T. KawaharaN. Sugimoto and T. Kakutani, Nonlinear interaction between short and long capillary-gravity waves, Journal of the Physical Society of Japan, 39 (1975), 1379-1386.  doi: 10.1143/JPSJ.39.1379.  Google Scholar

[22]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol.I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, NewYork-Heidelberg, translated fromthe French by P.Kenneth, 1972.  Google Scholar

[23]

V. G. Makhankov, On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq's equation, Physics Letters A, 50 (1974), 42-44.  doi: 10.1016/0375-9601(74)90344-2.  Google Scholar

[24]

K. Nishikawa, H. Hojo, K. Mima et al., Coupled nonlinear electron-plasma and ion-acoustic waves, Physical Review Letters, 33 (1974), 148. doi: 10.1103/PhysRevLett.33.148.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol.44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

J. A. Pava, Stability of solitary wave solutions for equations of short and long dispersive waves, Electronic Journal of Differential Equations, 72 (2006), 18p.  Google Scholar

[27]

G. Perla MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Applied Mathematics, 60 (2002), 111-129.  doi: 10.1090/qam/1878262.  Google Scholar

[28]

L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956.  doi: 10.1137/050631409.  Google Scholar

[29]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: Control, Optimisation and Calculus of Variations, 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.  Google Scholar

[30]

M. Tsutsumi, Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation, Internat. Ser. Math. Sci. Appl., 2 (1993), 513-528.   Google Scholar

[31]

M. Usman and B. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, Journal of Systems Science and Complexity, 20 (2007), 284-292.  doi: 10.1007/s11424-007-9025-2.  Google Scholar

[32]

H. Wang and S. Cui, The Cauchy problem for the Schrödinger-KdV system, Journal of Differential Equations, 250 (2011), 3559-3583.  doi: 10.1016/j.jde.2011.02.008.  Google Scholar

[33]

N. Yajima and J. Satsuma, Soliton solutions in a diatomic lattice system, Progress of Theoretical Physics, 62 (1979), 370-378.  doi: 10.1143/PTP.62.370.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.27

Article outline

[Back to Top]