doi: 10.3934/dcdsb.2020340

A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition

1. 

Nanhu College, Jiaxing University, Jiaxing, 314001, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China, Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

3. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, 314001, China

* Corresponding author: P. Zhu

Received  September 2018 Revised  September 2019 Published  November 2020

Fund Project: P. Zhu is supported by Zhejiang Provincial Natural Science Foundation of China (Grant No.LY19A010008)

A reliable and efficient a posteriori error estimator is presented for a weak Galerkin finite element method without stabilizer for the second order elliptic equation with mixed boundary conditions. The upper bound of the estimator is proved by Helmholtz decomposition technique and lower bound is hold naturally. The performance of the estimator is illustrated by numerical experiments.

Citation: Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020340
References:
[1]

M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42 (2005), 2320-2341.  doi: 10.1137/S0036142903425112.  Google Scholar

[2]

R. BeckerP. Hansbo and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Computer Methods in Applied Mechanics & Engineering, 192 (2003), 723-733.  doi: 10.1016/S0045-7825(02)00593-5.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

W. ChenF. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA. J. Numer. Anal., 36 (2016), 897-921.  doi: 10.1093/imanum/drv012.  Google Scholar

[5]

W. Dörlfer, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar

[6]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[7]

H. LiL. Mu and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes, Commun. Comput. Phys., 26 (2019), 558-578.  doi: 10.4208/cicp.OA-2018-0058.  Google Scholar

[8]

L. MuJ. WangY. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. Sci. Comput., 75 (2018), 782-802.  doi: 10.1007/s10915-017-0564-y.  Google Scholar

[10]

R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley, Chichester, 1996. Google Scholar

[11]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic probles, J Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differential Eq., 33 (2017), 381-398.  doi: 10.1002/num.22114.  Google Scholar

show all references

References:
[1]

M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42 (2005), 2320-2341.  doi: 10.1137/S0036142903425112.  Google Scholar

[2]

R. BeckerP. Hansbo and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Computer Methods in Applied Mechanics & Engineering, 192 (2003), 723-733.  doi: 10.1016/S0045-7825(02)00593-5.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

W. ChenF. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA. J. Numer. Anal., 36 (2016), 897-921.  doi: 10.1093/imanum/drv012.  Google Scholar

[5]

W. Dörlfer, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar

[6]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[7]

H. LiL. Mu and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes, Commun. Comput. Phys., 26 (2019), 558-578.  doi: 10.4208/cicp.OA-2018-0058.  Google Scholar

[8]

L. MuJ. WangY. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. Sci. Comput., 75 (2018), 782-802.  doi: 10.1007/s10915-017-0564-y.  Google Scholar

[10]

R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley, Chichester, 1996. Google Scholar

[11]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic probles, J Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differential Eq., 33 (2017), 381-398.  doi: 10.1002/num.22114.  Google Scholar

Figure 1.  Initial mesh for adaptive refinement
Figure 2.  Effectivity index for Example 1
Figure 3.  Example 1. Final adaptive refinement mesh and WG solution
Figure 4.  Effectivity index for Example 2
Figure 5.  Example 2. Final adaptive refinement mesh and WG solution
Figure 6.  Effectivity index for Example 3
Figure 7.  Example 3. Final adaptive refinement mesh and WG solution
[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (7)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]