• Previous Article
    Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response
  • DCDS-B Home
  • This Issue
  • Next Article
    A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation
doi: 10.3934/dcdsb.2020340

A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition

1. 

Nanhu College, Jiaxing University, Jiaxing, 314001, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China, Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

3. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, 314001, China

* Corresponding author: P. Zhu

Received  September 2018 Revised  September 2019 Published  November 2020

Fund Project: P. Zhu is supported by Zhejiang Provincial Natural Science Foundation of China (Grant No.LY19A010008)

A reliable and efficient a posteriori error estimator is presented for a weak Galerkin finite element method without stabilizer for the second order elliptic equation with mixed boundary conditions. The upper bound of the estimator is proved by Helmholtz decomposition technique and lower bound is hold naturally. The performance of the estimator is illustrated by numerical experiments.

Citation: Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020340
References:
[1]

M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42 (2005), 2320-2341.  doi: 10.1137/S0036142903425112.  Google Scholar

[2]

R. BeckerP. Hansbo and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Computer Methods in Applied Mechanics & Engineering, 192 (2003), 723-733.  doi: 10.1016/S0045-7825(02)00593-5.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

W. ChenF. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA. J. Numer. Anal., 36 (2016), 897-921.  doi: 10.1093/imanum/drv012.  Google Scholar

[5]

W. Dörlfer, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar

[6]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[7]

H. LiL. Mu and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes, Commun. Comput. Phys., 26 (2019), 558-578.  doi: 10.4208/cicp.OA-2018-0058.  Google Scholar

[8]

L. MuJ. WangY. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. Sci. Comput., 75 (2018), 782-802.  doi: 10.1007/s10915-017-0564-y.  Google Scholar

[10]

R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley, Chichester, 1996. Google Scholar

[11]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic probles, J Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differential Eq., 33 (2017), 381-398.  doi: 10.1002/num.22114.  Google Scholar

show all references

References:
[1]

M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal., 42 (2005), 2320-2341.  doi: 10.1137/S0036142903425112.  Google Scholar

[2]

R. BeckerP. Hansbo and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Computer Methods in Applied Mechanics & Engineering, 192 (2003), 723-733.  doi: 10.1016/S0045-7825(02)00593-5.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

W. ChenF. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA. J. Numer. Anal., 36 (2016), 897-921.  doi: 10.1093/imanum/drv012.  Google Scholar

[5]

W. Dörlfer, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.  doi: 10.1137/0733054.  Google Scholar

[6]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[7]

H. LiL. Mu and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes, Commun. Comput. Phys., 26 (2019), 558-578.  doi: 10.4208/cicp.OA-2018-0058.  Google Scholar

[8]

L. MuJ. WangY. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[9]

L. MuJ. Wang and X. Ye, A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. Sci. Comput., 75 (2018), 782-802.  doi: 10.1007/s10915-017-0564-y.  Google Scholar

[10]

R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, John Wiley, Chichester, 1996. Google Scholar

[11]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic probles, J Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differential Eq., 33 (2017), 381-398.  doi: 10.1002/num.22114.  Google Scholar

Figure 1.  Initial mesh for adaptive refinement
Figure 2.  Effectivity index for Example 1
Figure 3.  Example 1. Final adaptive refinement mesh and WG solution
Figure 4.  Effectivity index for Example 2
Figure 5.  Example 2. Final adaptive refinement mesh and WG solution
Figure 6.  Effectivity index for Example 3
Figure 7.  Example 3. Final adaptive refinement mesh and WG solution
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[3]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[4]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[10]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[11]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[12]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[13]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[17]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[18]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (20)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]