
-
Previous Article
A short-term food intake model involving glucose, insulin and ghrelin
- DCDS-B Home
- This Issue
-
Next Article
Initial value problem for fractional Volterra integro-differential equations with Caputo derivative
Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem
Department of Mathematics, Georgia College & State University, Milledgeville, GA 31061, USA |
We consider an ecological model consisting of two species of predators competing for their common prey with explicit interference competition. With a proper rescaling, the model is portrayed as a singularly perturbed system with one fast (prey dynamics) and two slow variables (dynamics of the predators). The model exhibits a variety of rich and interesting dynamics, including, but not limited to mixed-mode oscillations (MMOs), featuring concatenation of small and large amplitude oscillations, relaxation oscillations and bistability between a semi-trivial equilibrium state and a coexistent oscillatory state. More interestingly, in a neighborhood of singular Hopf bifurcation, long lasting transient dynamics in the form of chaotic MMOs or relaxation oscillations are observed as the system approaches the periodic attractor born out of supercritical Hopf bifurcation or a semi-trivial equilibrium state respectively. The transient dynamics could persist for hundreds or thousands of generations before the ecosystem experiences a regime shift. The time series of population cycles with different types of irregular oscillations arising in this model stem from a biological realistic feature, namely, by the variation in the intraspecific competition amongst the predators. To explain these oscillations, we use bifurcation analysis and methods from geometric singular perturbation theory. The numerical continuation study reveals the rich bifurcation structure in the system, including the existence of codimension-two bifurcations such as fold-Hopf and generalized Hopf bifurcations.
References:
[1] |
S. Ai and S. Sadhu,
The entry-exit theorem and relaxation oscillations in slow-fast planar systems, Journal of Diff. Eq., 268 (2020), 7220-7249.
doi: 10.1016/j.jde.2019.11.067. |
[2] |
C. Asaro and L. A. Chamberlin, Outbreak History $(1953-2014)$ of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria dispar L.) and Fall Cankerworm (Alsophila pometaria Harris), American Entomologist, (2015) 174–185. Google Scholar |
[3] |
T. R. Baumgartner, A. Soutar and V. Bartrina, Reconstruction of the history of Pacific sardine and Northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California, CalCOFl Rep., Vol. 33, 1992. Google Scholar |
[4] |
B. Braaksma,
Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.
doi: 10.1007/s003329900058. |
[5] |
M. Brøns, T. J. Kaper and H. G. Rotstein, Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis, Chaos, 18 (2008), 015101.
doi: 10.1063/1.2903177. |
[6] |
M. Brøns and R. Kaasen,
Canards and mixed-mode oscillations in a forest pest model, Theoretical Population Biology, 77 (2010), 238-242.
doi: 10.1016/j.tpb.2010.02.003. |
[7] |
M. Brøns, M. Krupa and M. Wechselberger,
Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.
|
[8] |
M. Casimir, History of outbreaks of the Australian plague locust, Chortoicetes terminifera (Walk.), between $1933$ and $1959$ and analyses of the influence of rainfall in these outbreaks, Aust. J. Agric. Res., 13 (1962), 670-700. Google Scholar |
[9] |
R. Curtu and J. Rubin,
Interaction of canard and singular Hopf mechanisms in a neural model, SIAM J. Appl. Dyn Syst., 10 (2011), 1443-1479.
doi: 10.1137/110823171. |
[10] |
S. L. T. de Souza, I. L. Caldas, R. L. Viana and J. M. Balthazar,
Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solitons & Fractals, 21 (2004), 763-772.
doi: 10.1016/j.chaos.2003.12.096. |
[11] |
B. Deng,
Food chain chaos due to junction-fold point, Chaos, 11 (2001), 514-525.
doi: 10.1063/1.1396340. |
[12] |
B. Deng and G. Hines,
Food chain chaos due to Shilnikovs orbit, Chaos, 12 (2002), 533-538.
doi: 10.1063/1.1482255. |
[13] |
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger,
Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.
doi: 10.1137/100791233. |
[14] |
B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, 2002.
doi: 10.1137/1.9780898718195. |
[15] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[16] |
J. Guckenheimer,
Singular Hopf bifurcation in systems with two slow variables, SIAM Journal of Applied Dynamical Systems, 7 (2008), 1355-1377.
doi: 10.1137/080718528. |
[17] |
J. Guckenheimer and P. Meerkamp,
Unfoldings of singular hopf bifurcation, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359.
doi: 10.1137/11083678X. |
[18] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[19] |
J. Guckenheimer and I. Lizarraga, Shilnikov homoclinic bifurcation of mixed-mode oscillations, SIAM J. Appl. Dyn. Syst., 14 (2015), 764-786.
doi: 10.1137/140972007. |
[20] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[21] |
A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y-C. Lai, A. Morozov, S. Petrovskii, K. Scranton and M. L. Zeeman, Transient phenomena in ecology, Science, 07 (2018). Google Scholar |
[22] |
F. M. Hilker and H. Malchow,
Strange periodic attractors in a prey-predator system with infected prey, Math. Pop. Studies, 13 (2006), 119-134.
doi: 10.1080/08898480600788568. |
[23] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[24] |
M. T. M. Koper,
Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol- Duffing model with a cross-shaped phase diagram, Physica D, 80 (1995), 72-74.
doi: 10.1016/0167-2789(95)90061-6. |
[25] |
E. Korpim$\ddot{\mathrm{a}}$ki, P. R. Brown, J. Jacob and R. P. Pech, The puzzles of population cycles and outbreaks of small mammals solved?, BioScience, 54 (2004), 1071–1079. https://academic.oup.com/bioscience/article/54/12/1071/329290. Google Scholar |
[26] |
M. Krupa, N. Popović and N. Kopell,
Mixed-mode oscillations in three time-scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7 (2008), 361-420.
doi: 10.1137/070688912. |
[27] |
M. Krupa and M. Wechselberger,
Local analysis near a folded saddle-node singularity, J. of Differential Equations, 248 (2010), 2841-2888.
doi: 10.1016/j.jde.2010.02.006. |
[28] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[29] |
M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators, Chaos, 19 (2009), 043121, 10 pp.
doi: 10.1063/1.3270262. |
[30] |
Y. A. Kuznetsov, Elements of Applied BifurcationTheory, Springer-Verlag, New York, 1998. |
[31] |
B. Letson, J. Rubin and T. Vo,
Analysis of interacting local oscillation mechanisms in three-timescale systems, SIAM J. Appl. Math., 77 (2017), 1020-1046.
doi: 10.1137/16M1088429. |
[32] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Diff. Equ., 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[33] |
J. Maselko and H. L. Swinney,
Complex periodic oscillation and Farey arithmetic in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 85 (1986), 6430-6441.
doi: 10.1063/1.451473. |
[34] |
R. McGehee and R. A. Armstrong,
Some mathematical problems concerning the ecological principle of competitive exclusion, J. Diff. Eq., 23 (1977), 30-52.
doi: 10.1016/0022-0396(77)90135-8. |
[35] |
A. Y. Morozov, M. Banerjee and S. V. Petrovskii, Long term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, J. Theo. Biol., 396 (2016), 116-124. Google Scholar |
[36] |
A. Morozov, K. Abbott, K. Cuddington, T. Francisd, G. Gellnere, A. Hastings, Y.-C. Laig, S. Petrovskii, K. Scranton and M. LouZeeman, Long transients in ecology: Theory and applications, Physics of Life Reviews, 32 (2020, ) 1–40.
doi: 10.1016/j.plrev.2019.09.004. |
[37] |
J. Mujica, B. Krauskopf and H. M. Osinga,
Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018), 1395-1431.
doi: 10.1137/17M1133452. |
[38] |
S. Muratori and S. Rinaldi,
Remarks on competitive coexistence, SIAM J. Applied Math., 49 (1989), 1462-1472.
doi: 10.1137/0149088. |
[39] |
A. B. Peet, P. A. Deutsch and E. Peacock-Lpez,
Complex dynamics in a three-level trophic system with intraspecies interaction, J. Theor. Biol., 232 (2005), 491-503.
doi: 10.1016/j.jtbi.2004.08.028. |
[40] |
J.-C. Poggiale, C. Aldebert, B. Girardot and B. W. Kooi,
Analysis of a predatorprey model with specific time scales: a geometrical approach proving the occurrence of canard solutions, J. of Math. Bio., 80 (2020), 39-60.
doi: 10.1007/s00285-019-01337-4. |
[41] |
L. C. Pontryagin, Asymptotic behavior of solutions of systems of differential equations with a small parameter in the derivatives of highest order, Izv. Akad. Nauk. SSSR Ser. Math., 21 (1957), 605–626 (in Russian). |
[42] |
S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecological Modelling, 61 (1992), 287-308. Google Scholar |
[43] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[44] |
H. G. Rotstein, M. Wechselberger and N. Kopell,
Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J Applied Dynamical Systems, 7 (2008), 1582-1611.
doi: 10.1137/070699093. |
[45] |
S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis,
Coexistence in competition models with density-dependent mortality, C. R. Biologies, 330 (2007), 845-854.
doi: 10.1016/j.crvi.2007.10.004. |
[46] |
S. Sadhu, Stochasticity induced mixed-mode oscillations and distribution of recurrent outbreaks in an ecosystem, Chaos, 27(2017), 3, 033108.
doi: 10.1063/1.4977553. |
[47] |
S. Sadhu and S. Chakraborty Thakur,
Uncertainty and predictability in population dynamics of a bitrophic ecological model: Mixed-mode oscillations, bistability and sensitivity to parameters, Ecological Complexity, 32 (2017), 196-208.
doi: 10.1016/j.ecocom.2016.08.007. |
[48] |
S. Sadhu and C. Kuehn, Stochastic mixed-mode oscillations in a three-species predator-prey model, Chaos, 28 (2018), 3, 033606.
doi: 10.1063/1.4994830. |
[49] |
S. Sadhu, Analysis of long term transient dynamics near singular Hopf bifurcation in a two-timescale ecosystem, submitted. Google Scholar |
[50] |
S. Schecter,
Persistent unstable equilibria and closed orbits of a singularly perturbed equation, J. Diff. Eqns., 60 (1985), 131-141.
doi: 10.1016/0022-0396(85)90124-X. |
[51] |
M. Scheffer and S. R. Carpenter,
Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends in Ecol. and Evol., 18 (2003), 648-656.
doi: 10.1016/j.tree.2003.09.002. |
[52] |
M. Scheffer, Critical Transitions in Nature and Society, 16 Princeton University Press (2009). Google Scholar |
[53] |
P. Szmolyan and M. Wechselberger,
Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453.
doi: 10.1006/jdeq.2001.4001. |
[54] |
M. Wechselberger,
Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.
doi: 10.1137/030601995. |
[55] |
D. E. Wright, Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model, Aust. J. Ecol., 12 (1987), 423-437. Google Scholar |
show all references
References:
[1] |
S. Ai and S. Sadhu,
The entry-exit theorem and relaxation oscillations in slow-fast planar systems, Journal of Diff. Eq., 268 (2020), 7220-7249.
doi: 10.1016/j.jde.2019.11.067. |
[2] |
C. Asaro and L. A. Chamberlin, Outbreak History $(1953-2014)$ of Spring Defoliators Impacting Oak-Dominated Forests in Virginia, with Emphasis on Gypsy Moth (Lymantria dispar L.) and Fall Cankerworm (Alsophila pometaria Harris), American Entomologist, (2015) 174–185. Google Scholar |
[3] |
T. R. Baumgartner, A. Soutar and V. Bartrina, Reconstruction of the history of Pacific sardine and Northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California, CalCOFl Rep., Vol. 33, 1992. Google Scholar |
[4] |
B. Braaksma,
Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.
doi: 10.1007/s003329900058. |
[5] |
M. Brøns, T. J. Kaper and H. G. Rotstein, Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis, Chaos, 18 (2008), 015101.
doi: 10.1063/1.2903177. |
[6] |
M. Brøns and R. Kaasen,
Canards and mixed-mode oscillations in a forest pest model, Theoretical Population Biology, 77 (2010), 238-242.
doi: 10.1016/j.tpb.2010.02.003. |
[7] |
M. Brøns, M. Krupa and M. Wechselberger,
Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.
|
[8] |
M. Casimir, History of outbreaks of the Australian plague locust, Chortoicetes terminifera (Walk.), between $1933$ and $1959$ and analyses of the influence of rainfall in these outbreaks, Aust. J. Agric. Res., 13 (1962), 670-700. Google Scholar |
[9] |
R. Curtu and J. Rubin,
Interaction of canard and singular Hopf mechanisms in a neural model, SIAM J. Appl. Dyn Syst., 10 (2011), 1443-1479.
doi: 10.1137/110823171. |
[10] |
S. L. T. de Souza, I. L. Caldas, R. L. Viana and J. M. Balthazar,
Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solitons & Fractals, 21 (2004), 763-772.
doi: 10.1016/j.chaos.2003.12.096. |
[11] |
B. Deng,
Food chain chaos due to junction-fold point, Chaos, 11 (2001), 514-525.
doi: 10.1063/1.1396340. |
[12] |
B. Deng and G. Hines,
Food chain chaos due to Shilnikovs orbit, Chaos, 12 (2002), 533-538.
doi: 10.1063/1.1482255. |
[13] |
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga and M. Wechselberger,
Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.
doi: 10.1137/100791233. |
[14] |
B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, 2002.
doi: 10.1137/1.9780898718195. |
[15] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq., 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[16] |
J. Guckenheimer,
Singular Hopf bifurcation in systems with two slow variables, SIAM Journal of Applied Dynamical Systems, 7 (2008), 1355-1377.
doi: 10.1137/080718528. |
[17] |
J. Guckenheimer and P. Meerkamp,
Unfoldings of singular hopf bifurcation, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359.
doi: 10.1137/11083678X. |
[18] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2. |
[19] |
J. Guckenheimer and I. Lizarraga, Shilnikov homoclinic bifurcation of mixed-mode oscillations, SIAM J. Appl. Dyn. Syst., 14 (2015), 764-786.
doi: 10.1137/140972007. |
[20] |
G. Hardin,
The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[21] |
A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y-C. Lai, A. Morozov, S. Petrovskii, K. Scranton and M. L. Zeeman, Transient phenomena in ecology, Science, 07 (2018). Google Scholar |
[22] |
F. M. Hilker and H. Malchow,
Strange periodic attractors in a prey-predator system with infected prey, Math. Pop. Studies, 13 (2006), 119-134.
doi: 10.1080/08898480600788568. |
[23] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[24] |
M. T. M. Koper,
Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol- Duffing model with a cross-shaped phase diagram, Physica D, 80 (1995), 72-74.
doi: 10.1016/0167-2789(95)90061-6. |
[25] |
E. Korpim$\ddot{\mathrm{a}}$ki, P. R. Brown, J. Jacob and R. P. Pech, The puzzles of population cycles and outbreaks of small mammals solved?, BioScience, 54 (2004), 1071–1079. https://academic.oup.com/bioscience/article/54/12/1071/329290. Google Scholar |
[26] |
M. Krupa, N. Popović and N. Kopell,
Mixed-mode oscillations in three time-scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7 (2008), 361-420.
doi: 10.1137/070688912. |
[27] |
M. Krupa and M. Wechselberger,
Local analysis near a folded saddle-node singularity, J. of Differential Equations, 248 (2010), 2841-2888.
doi: 10.1016/j.jde.2010.02.006. |
[28] |
C. Kuehn, Multiple Time Scale Dynamics, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[29] |
M. Kuwamura and H. Chiba, Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators, Chaos, 19 (2009), 043121, 10 pp.
doi: 10.1063/1.3270262. |
[30] |
Y. A. Kuznetsov, Elements of Applied BifurcationTheory, Springer-Verlag, New York, 1998. |
[31] |
B. Letson, J. Rubin and T. Vo,
Analysis of interacting local oscillation mechanisms in three-timescale systems, SIAM J. Appl. Math., 77 (2017), 1020-1046.
doi: 10.1137/16M1088429. |
[32] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Diff. Equ., 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[33] |
J. Maselko and H. L. Swinney,
Complex periodic oscillation and Farey arithmetic in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 85 (1986), 6430-6441.
doi: 10.1063/1.451473. |
[34] |
R. McGehee and R. A. Armstrong,
Some mathematical problems concerning the ecological principle of competitive exclusion, J. Diff. Eq., 23 (1977), 30-52.
doi: 10.1016/0022-0396(77)90135-8. |
[35] |
A. Y. Morozov, M. Banerjee and S. V. Petrovskii, Long term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, J. Theo. Biol., 396 (2016), 116-124. Google Scholar |
[36] |
A. Morozov, K. Abbott, K. Cuddington, T. Francisd, G. Gellnere, A. Hastings, Y.-C. Laig, S. Petrovskii, K. Scranton and M. LouZeeman, Long transients in ecology: Theory and applications, Physics of Life Reviews, 32 (2020, ) 1–40.
doi: 10.1016/j.plrev.2019.09.004. |
[37] |
J. Mujica, B. Krauskopf and H. M. Osinga,
Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018), 1395-1431.
doi: 10.1137/17M1133452. |
[38] |
S. Muratori and S. Rinaldi,
Remarks on competitive coexistence, SIAM J. Applied Math., 49 (1989), 1462-1472.
doi: 10.1137/0149088. |
[39] |
A. B. Peet, P. A. Deutsch and E. Peacock-Lpez,
Complex dynamics in a three-level trophic system with intraspecies interaction, J. Theor. Biol., 232 (2005), 491-503.
doi: 10.1016/j.jtbi.2004.08.028. |
[40] |
J.-C. Poggiale, C. Aldebert, B. Girardot and B. W. Kooi,
Analysis of a predatorprey model with specific time scales: a geometrical approach proving the occurrence of canard solutions, J. of Math. Bio., 80 (2020), 39-60.
doi: 10.1007/s00285-019-01337-4. |
[41] |
L. C. Pontryagin, Asymptotic behavior of solutions of systems of differential equations with a small parameter in the derivatives of highest order, Izv. Akad. Nauk. SSSR Ser. Math., 21 (1957), 605–626 (in Russian). |
[42] |
S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecological Modelling, 61 (1992), 287-308. Google Scholar |
[43] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[44] |
H. G. Rotstein, M. Wechselberger and N. Kopell,
Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J Applied Dynamical Systems, 7 (2008), 1582-1611.
doi: 10.1137/070699093. |
[45] |
S. Ruan, A. Ardito, P. Ricciardi and D. L. DeAngelis,
Coexistence in competition models with density-dependent mortality, C. R. Biologies, 330 (2007), 845-854.
doi: 10.1016/j.crvi.2007.10.004. |
[46] |
S. Sadhu, Stochasticity induced mixed-mode oscillations and distribution of recurrent outbreaks in an ecosystem, Chaos, 27(2017), 3, 033108.
doi: 10.1063/1.4977553. |
[47] |
S. Sadhu and S. Chakraborty Thakur,
Uncertainty and predictability in population dynamics of a bitrophic ecological model: Mixed-mode oscillations, bistability and sensitivity to parameters, Ecological Complexity, 32 (2017), 196-208.
doi: 10.1016/j.ecocom.2016.08.007. |
[48] |
S. Sadhu and C. Kuehn, Stochastic mixed-mode oscillations in a three-species predator-prey model, Chaos, 28 (2018), 3, 033606.
doi: 10.1063/1.4994830. |
[49] |
S. Sadhu, Analysis of long term transient dynamics near singular Hopf bifurcation in a two-timescale ecosystem, submitted. Google Scholar |
[50] |
S. Schecter,
Persistent unstable equilibria and closed orbits of a singularly perturbed equation, J. Diff. Eqns., 60 (1985), 131-141.
doi: 10.1016/0022-0396(85)90124-X. |
[51] |
M. Scheffer and S. R. Carpenter,
Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends in Ecol. and Evol., 18 (2003), 648-656.
doi: 10.1016/j.tree.2003.09.002. |
[52] |
M. Scheffer, Critical Transitions in Nature and Society, 16 Princeton University Press (2009). Google Scholar |
[53] |
P. Szmolyan and M. Wechselberger,
Canards in $\mathbb{R}^3$, Journal of Differential Equations, 177 (2001), 419-453.
doi: 10.1006/jdeq.2001.4001. |
[54] |
M. Wechselberger,
Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.
doi: 10.1137/030601995. |
[55] |
D. E. Wright, Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model, Aust. J. Ecol., 12 (1987), 423-437. Google Scholar |


















[1] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[2] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[3] |
Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021117 |
[4] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[5] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[6] |
Hsin-Lun Li. Mixed Hegselmann-Krause dynamics. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021084 |
[7] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[8] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[9] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021076 |
[10] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[11] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[12] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[13] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[14] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[15] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[16] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021097 |
[17] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[18] |
Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021041 |
[19] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[20] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]