doi: 10.3934/dcdsb.2020346

Qualitative analysis of a generalized Nosé-Hoover oscillator

1. 

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

Hubei Key Laboratory of Engineering Modeling and Science Computing, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author: Xiao-Song Yang

Received  November 2019 Revised  July 2020 Published  November 2020

Fund Project: The first author is supported by NSFC grant 51979116

In this paper, we analyze the qualitative dynamics of a generalized Nosé-Hoover oscillator with two parameters varying in certain scope. We show that if a solution of this oscillator will not tend to the invariant manifold $ \{(x,y,z)\in \mathbb R^3|x = 0,y = 0\} $, it must pass through the plane $ z = 0 $ infinite times. Especially, every invariant set of this oscillator must have intersection with the plane $ z = 0 $. In addition, we show that if a solution is quasiperiodic, it must pass through at least five quadrants of $ \mathbb R^3 $.

Citation: Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020346
References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

show all references

References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

Figure 1.  The grid is part of $ S_{1} $ and the shadow is part of $ S_{2} $
Figure 2.  The shadow is the projection of the region $ I $ on the plane $ z = 0 $
Figure 3.  $ A_{1}\rightarrow A_{2} $ means there are solutions from $ A_{1} $ to $ A_{2} $, $ B_{1}\dashrightarrow A_{2} $ means there are solutions from $ B_{1} $ to $ A_{2} $ and these solutions have intersection with $ X $-axis or $ Y $-axis
Figure 4.  From right to left are $ l_{10} $ and $ l_{20} $
Figure 5.  From right to left are $ l_{01} $, $ l_{02} $, $ l_{03} $ and $ l_{04} $
[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[13]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[14]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[15]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (10)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]