doi: 10.3934/dcdsb.2020346

Qualitative analysis of a generalized Nosé-Hoover oscillator

1. 

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

3. 

Hubei Key Laboratory of Engineering Modeling and Science Computing, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding author: Xiao-Song Yang

Received  November 2019 Revised  July 2020 Published  November 2020

Fund Project: The first author is supported by NSFC grant 51979116

In this paper, we analyze the qualitative dynamics of a generalized Nosé-Hoover oscillator with two parameters varying in certain scope. We show that if a solution of this oscillator will not tend to the invariant manifold $ \{(x,y,z)\in \mathbb R^3|x = 0,y = 0\} $, it must pass through the plane $ z = 0 $ infinite times. Especially, every invariant set of this oscillator must have intersection with the plane $ z = 0 $. In addition, we show that if a solution is quasiperiodic, it must pass through at least five quadrants of $ \mathbb R^3 $.

Citation: Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020346
References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

show all references

References:
[1]

Q. Han and X.-S. Yang, Qualitative analysis of the Nosé-Hoover oscillator, Qual. Theory Dyn. Syst., 19 (2020), 1-36.  doi: 10.1007/s12346-020-00340-1.  Google Scholar

[2]

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31 (1985), 1695-1697.  doi: 10.1103/PhysRevA.31.1695.  Google Scholar

[3]

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics, 81 (1984), 511-519.   Google Scholar

[4]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 52 (2002), 255-268.   Google Scholar

[5]

H. A. PoschW. G. Hoover and F. J. Vesely, Canonical dynamics of the nosé oscillator: Stability, order, and chaos, Phys. Rev. A, 33 (1986), 4253-4265.  doi: 10.1103/PhysRevA.33.4253.  Google Scholar

[6]

P. C. Rech, Quasiperiodicity and chaos in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650170, 7 pp. doi: 10.1142/S0218127416501704.  Google Scholar

[7]

J. C. SprottW. G. Hoover and C. G. Hoover, Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized nosé-hoover oscillators with a temperature gradient, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 89 (2014), 042914-042914.  doi: 10.1103/PhysRevE.89.042914.  Google Scholar

[8]

L. Wang and X.-S. Yang, The invariant tori of knot type and the interlinked invariant tori in the nosé-hoover oscillator, European Physical Journal B, 88 (2015), 1-5.  doi: 10.1140/epjb/e2015-60062-1.  Google Scholar

[9]

L. Wang and X.-S. Yang, A vast amount of various invariant tori in the Nosé-Hoover oscillator, Chaos, 25 (2015), 123110, 6 pp. doi: 10.1063/1.4937167.  Google Scholar

[10]

L. Wang and X.-S. Yang, The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750111, 12 pp. doi: 10.1142/S0218127417501115.  Google Scholar

[11]

L. Wang and X.-S. Yang, Global analysis of a generalized Nosé-Hoover oscillator, J. Math. Anal. Appl., 464 (2018), 370-379.  doi: 10.1016/j.jmaa.2018.04.013.  Google Scholar

Figure 1.  The grid is part of $ S_{1} $ and the shadow is part of $ S_{2} $
Figure 2.  The shadow is the projection of the region $ I $ on the plane $ z = 0 $
Figure 3.  $ A_{1}\rightarrow A_{2} $ means there are solutions from $ A_{1} $ to $ A_{2} $, $ B_{1}\dashrightarrow A_{2} $ means there are solutions from $ B_{1} $ to $ A_{2} $ and these solutions have intersection with $ X $-axis or $ Y $-axis
Figure 4.  From right to left are $ l_{10} $ and $ l_{20} $
Figure 5.  From right to left are $ l_{01} $, $ l_{02} $, $ l_{03} $ and $ l_{04} $
[1]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[2]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[15]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[16]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[17]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[18]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[19]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[20]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (21)
  • HTML views (130)
  • Cited by (0)

Other articles
by authors

[Back to Top]