[1]
|
I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.
|
[2]
|
G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math..
|
[3]
|
G. Bao, Y. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2.
|
[4]
|
G. Bao, G. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.
doi: 10.1016/j.jcp.2012.04.002.
|
[5]
|
G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.
doi: 10.1090/S0025-5718-09-02257-1.
|
[6]
|
G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.
doi: 10.1137/040604315.
|
[7]
|
A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.
doi: 10.1002/cpa.3160330603.
|
[8]
|
J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.
doi: 10.1006/jcph.1994.1159.
|
[9]
|
Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.
doi: 10.1137/040610337.
|
[10]
|
Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.
doi: 10.1137/S0036142902400901.
|
[11]
|
F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.
doi: 10.1137/S1064827596301406.
|
[12]
|
D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.
|
[13]
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998.
doi: 10.1007/978-3-662-03537-5.
|
[14]
|
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.2307/2005997.
|
[15]
|
Q. Fang, D. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.
doi: 10.1016/j.jcp.2006.11.018.
|
[16]
|
C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.
doi: 10.1002/nme.2579.
|
[17]
|
M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.
doi: 10.1006/jcph.1995.1210.
|
[18]
|
M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.
doi: 10.1016/j.jcp.2004.06.012.
|
[19]
|
T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.
doi: 10.1017/S0962492900002890.
|
[20]
|
I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.
doi: 10.1016/0045-7825(92)90109-W.
|
[21]
|
D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.
doi: 10.2307/1971205.
|
[22]
|
X. Jiang, P. Li, J. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.
doi: 10.1007/s10915-017-0382-2.
|
[23]
|
X. Jiang, P. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.
doi: 10.4208/cicp.301011.270412a.
|
[24]
|
J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.
|
[25]
|
A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015.
doi: 10.1007/978-3-319-11086-8.
|
[26]
|
P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722.
doi: 10.1016/j.cma.2019.112722.
|
[27]
|
Y. Li, W. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.
doi: 10.4208/csiam-am.2020-0025.
|
[28]
|
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.
|
[29]
|
J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001.
|
[30]
|
A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.
doi: 10.2307/2005357.
|
[31]
|
E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.
doi: 10.1016/S0168-9274(98)00026-9.
|
[32]
|
Z. Wang, G. Bao, J. Li, P. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.
doi: 10.1137/140969907.
|
[33]
|
X. Yuan, G. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.
doi: 10.4208/csiam-am.2020-0013.
|