• Previous Article
    A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence
  • DCDS-B Home
  • This Issue
  • Next Article
    Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications
January  2021, 26(1): 61-79. doi: 10.3934/dcdsb.2020351

An adaptive finite element DtN method for the three-dimensional acoustic scattering problem

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

* Corresponding author: Gang Bao

Received  July 2020 Revised  October 2020 Published  January 2021 Early access  November 2020

Fund Project: The first author is supported in part by an NSFC Innovative Group Fund (No.11621101). The last author is supported in part by the NSF grant DMS-1912704

This paper is concerned with a numerical solution of the acoustic scattering by a bounded impenetrable obstacle in three dimensions. The obstacle scattering problem is formulated as a boundary value problem in a bounded domain by using a Dirichlet-to-Neumann (DtN) operator. An a posteriori error estimate is derived for the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to decay exponentially with respect to the truncation parameter. Based on the a posteriori error estimate, an adaptive finite element method is developed for the obstacle scattering problem. The truncation parameter is determined by the truncation error of the DtN operator and the mesh elements for local refinement are marked through the finite element approximation error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Citation: Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351
References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

show all references

References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

Figure 1.  A schematic of octree data structure
Figure 2.  Two geometries to avoid hanging points. (left) Twin-tetrahedron geometry. (right) Four-tetrahedron geometry
Figure 3.  Mesh refinement on the surface (red points are redefined midpoints on the boundary)
Figure 4.  Example 1: (left) initial mesh on the $ x_1 x_2 $-plane. (right) adaptive mesh on the $ x_1 x_2 $-plane
Figure 5.  Example 1: quasi-optimality of the a priori and a posteriori error estimates
Figure 6.  Example 2: (left) an adaptively refined mesh with 63898 elements. (right) quasi-optimality of the a posteriori error estimate
Table 1.  The adaptive FEM-DtN algorithm
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
[1]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400

[2]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[4]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[5]

Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012

[6]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[7]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[9]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[10]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[11]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[12]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[13]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[14]

Michael Hintermüller, Monserrat Rincon-Camacho. An adaptive finite element method in $L^2$-TV-based image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685-711. doi: 10.3934/ipi.2014.8.685

[15]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[18]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[19]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems & Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[20]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (152)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]