• Previous Article
    A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence
  • DCDS-B Home
  • This Issue
  • Next Article
    Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications
January  2021, 26(1): 61-79. doi: 10.3934/dcdsb.2020351

An adaptive finite element DtN method for the three-dimensional acoustic scattering problem

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

* Corresponding author: Gang Bao

Received  July 2020 Revised  October 2020 Published  November 2020

Fund Project: The first author is supported in part by an NSFC Innovative Group Fund (No.11621101). The last author is supported in part by the NSF grant DMS-1912704

This paper is concerned with a numerical solution of the acoustic scattering by a bounded impenetrable obstacle in three dimensions. The obstacle scattering problem is formulated as a boundary value problem in a bounded domain by using a Dirichlet-to-Neumann (DtN) operator. An a posteriori error estimate is derived for the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to decay exponentially with respect to the truncation parameter. Based on the a posteriori error estimate, an adaptive finite element method is developed for the obstacle scattering problem. The truncation parameter is determined by the truncation error of the DtN operator and the mesh elements for local refinement are marked through the finite element approximation error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Citation: Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351
References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

show all references

References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

Figure 1.  A schematic of octree data structure
Figure 2.  Two geometries to avoid hanging points. (left) Twin-tetrahedron geometry. (right) Four-tetrahedron geometry
Figure 3.  Mesh refinement on the surface (red points are redefined midpoints on the boundary)
Figure 4.  Example 1: (left) initial mesh on the $ x_1 x_2 $-plane. (right) adaptive mesh on the $ x_1 x_2 $-plane
Figure 5.  Example 1: quasi-optimality of the a priori and a posteriori error estimates
Figure 6.  Example 2: (left) an adaptively refined mesh with 63898 elements. (right) quasi-optimality of the a posteriori error estimate
Table 1.  The adaptive FEM-DtN algorithm
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[14]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[15]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[16]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[17]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[18]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[19]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[20]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (68)
  • HTML views (84)
  • Cited by (0)

Other articles
by authors

[Back to Top]