doi: 10.3934/dcdsb.2020351

An adaptive finite element DtN method for the three-dimensional acoustic scattering problem

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

2. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

* Corresponding author: Gang Bao

Received  July 2020 Revised  October 2020 Published  November 2020

Fund Project: The first author is supported in part by an NSFC Innovative Group Fund (No.11621101). The last author is supported in part by the NSF grant DMS-1912704

This paper is concerned with a numerical solution of the acoustic scattering by a bounded impenetrable obstacle in three dimensions. The obstacle scattering problem is formulated as a boundary value problem in a bounded domain by using a Dirichlet-to-Neumann (DtN) operator. An a posteriori error estimate is derived for the finite element method with the truncated DtN operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of the DtN operator, where the latter is shown to decay exponentially with respect to the truncation parameter. Based on the a posteriori error estimate, an adaptive finite element method is developed for the obstacle scattering problem. The truncation parameter is determined by the truncation error of the DtN operator and the mesh elements for local refinement are marked through the finite element approximation error. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Citation: Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020351
References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

show all references

References:
[1] I. Babuška and A. Aziz, Survey Lectures on mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, ed. by A. Aziz, Academic Press, New York, 1972.   Google Scholar
[2]

G. Bao, R. Delgadillo, G. Hu, D. Liu and S. Luo, Modeling and computation of nano-optics, CSIAM Trans. Appl. Math.. Google Scholar

[3]

G. BaoY. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration. Mech. Anal., 229 (2018), 835-884.  doi: 10.1007/s00205-018-1228-2.  Google Scholar

[4]

G. BaoG. Hu and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys., 231 (2012), 4967-4979.  doi: 10.1016/j.jcp.2012.04.002.  Google Scholar

[5]

G. BaoP. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures, Math. Comp., 79 (2010), 1-34.  doi: 10.1090/S0025-5718-09-02257-1.  Google Scholar

[6]

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121-2143.  doi: 10.1137/040604315.  Google Scholar

[7]

A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), 707-725.  doi: 10.1002/cpa.3160330603.  Google Scholar

[8]

J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[9]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.  doi: 10.1137/040610337.  Google Scholar

[10]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799-826.  doi: 10.1137/S0036142902400901.  Google Scholar

[11]

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, New York, 1983.  Google Scholar

[13]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition, Springer, Berlin, New York, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[14]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.  doi: 10.2307/2005997.  Google Scholar

[15]

Q. FangD. P. Nicholls and J. Shen, A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), 1145-1169.  doi: 10.1016/j.jcp.2006.11.018.  Google Scholar

[16]

C. Geuzaine and J.-F. Remacle, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), 1309-1331.  doi: 10.1002/nme.2579.  Google Scholar

[17]

M. J. Grote and J. B. Keller, On nonreflecting boundary conditions, J. Comput. Phys., 122 (1995), 231-243.  doi: 10.1006/jcph.1995.1210.  Google Scholar

[18]

M. J. Grote and C. Kirsch, Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., 201 (2004), 630-650.  doi: 10.1016/j.jcp.2004.06.012.  Google Scholar

[19]

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47-106.  doi: 10.1017/S0962492900002890.  Google Scholar

[20]

I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Comput. Methods Appl. Mech. Engrg., 97 (1992), 103-124.  doi: 10.1016/0045-7825(92)90109-W.  Google Scholar

[21]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math., 121 (1985), 463-488.  doi: 10.2307/1971205.  Google Scholar

[22]

X. JiangP. LiJ. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition, J. Sci. Comput., 72 (2017), 936-956.  doi: 10.1007/s10915-017-0382-2.  Google Scholar

[23]

X. JiangP. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method, Commun. Comput. Phys., 13 (2013), 1227-1244.  doi: 10.4208/cicp.301011.270412a.  Google Scholar

[24]

J. Jin, The Finite Element Method in Electromagnetics, Second edition. New York, 2002.  Google Scholar

[25]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's Equations, Springer International Publishing, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[26]

P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures, Comput. Methods Appl. Mech. Engrg., 360 (2020), 112722. doi: 10.1016/j.cma.2019.112722.  Google Scholar

[27]

Y. LiW. Zheng and X. Zhu, A CIP-FEM for high-frequency scattering problem with the truncated DtN boundary condition, CSIAM Trans. Appl. Math., 1 (2020), 530-560.  doi: 10.4208/csiam-am.2020-0025.  Google Scholar

[28] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, Springer-Verlag, New York, 2001. Google Scholar

[30]

A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), 959-962.  doi: 10.2307/2005357.  Google Scholar

[31]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), 533-557.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[32]

Z. WangG. BaoJ. LiP. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition, SIAM J. Numer. Anal., 53 (2015), 1585-1607.  doi: 10.1137/140969907.  Google Scholar

[33]

X. YuanG. Bao and P. Li, An adaptive finite element DtN method for the open cavity scattering problems, CSIAM Trans. Appl. Math., 1 (2020), 316-345.  doi: 10.4208/csiam-am.2020-0013.  Google Scholar

Figure 1.  A schematic of octree data structure
Figure 2.  Two geometries to avoid hanging points. (left) Twin-tetrahedron geometry. (right) Four-tetrahedron geometry
Figure 3.  Mesh refinement on the surface (red points are redefined midpoints on the boundary)
Figure 4.  Example 1: (left) initial mesh on the $ x_1 x_2 $-plane. (right) adaptive mesh on the $ x_1 x_2 $-plane
Figure 5.  Example 1: quasi-optimality of the a priori and a posteriori error estimates
Figure 6.  Example 2: (left) an adaptively refined mesh with 63898 elements. (right) quasi-optimality of the a posteriori error estimate
Table 1.  The adaptive FEM-DtN algorithm
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
1 Given a tolerance $ \varepsilon > 0 $;
2 Choose $ R $, $ R' $ and $ N $ such that $ \varepsilon_{N}<10^{-8} $;
3 Construct an initial tetrahedral partition $ \mathcal{M}_h $ over $ \Omega $ and compute error estimators;
4 While $ \eta_K>\varepsilon $, do
5     mark $ K $, refine $ \mathcal{M}_h $, and obtain a new mesh $ \hat{\mathcal{M}}_h $.
6     solve the discrete problem on the $ \hat{\mathcal{M}}_h $.
7     compute the corresponding error estimators;
8 End while.
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[12]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]