doi: 10.3934/dcdsb.2020352

Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise

Gina Cody School of Engineering and Computer Science, 1455 De Maisonneuve Blvd., W. Montreal, QC H3G 1M8, Canada

Corresponding author: Leanne Dong

Received  November 2019 Revised  June 2020 Published  December 2020

In this paper we prove that the stochastic Navier-Stokes equations with stable Lévy noise generate a random dynamical systems. Then we prove the existence of random attractor for the Navier-Stokes equations on 2D spheres under stable Lévy noise (finite dimensional). We also deduce the existence of a Feller Markov Invariant Measure.

Citation: Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020352
References:
[1]

D. Applebaum, Lévy processes and stochastic integrals in Banach spaces, Probab. Math. Statist., 27 (2007), 75-88.   Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Science & Business Media, 2013. Google Scholar

[3]

J.-P. Bouchaud and A. George, Anomalous diffusion in disordered media: Statistic mechanics, models and physical applications, Phys. Rep, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

Z. Brzeźiak, Asymptotic compactness and absorbing sets for stochastic Burgers' equations driven by space-time white noise and for some two-dimensional stochastic Navier-Stokes equations on certain unbounded domains, Stochastic Partial Differential Equations and Applications–VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 35–52.  Google Scholar

[5]

Z. BrzeźniakM. Capiński and F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Related Fields, 95 (1993), 87-102.  doi: 10.1007/BF01197339.  Google Scholar

[6]

Z. BrzeźiakB. Goldys and Q. T. Le Gia, Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere, J. Math. Anal. Appl., 426 (2015), 505-545.  doi: 10.1016/j.jmaa.2015.01.054.  Google Scholar

[7]

Z. BrzeźiakB. Goldys and Q. T. Le Gia, Random attractors for the stochastic Navier–Stokes equations on the 2D unit sphere, J. Math. Fluid Mech., 20 (2018), 227-253.  doi: 10.1007/s00021-017-0351-4.  Google Scholar

[8]

Z. Brzeźiak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587-5629.  doi: 10.1090/S0002-9947-06-03923-7.  Google Scholar

[9]

Z. Brzeźiak and J. Zabczyk, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.  doi: 10.1007/s11118-009-9149-1.  Google Scholar

[10]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[11]

M. D. ChekrounE. Simonnet and M. Ghil, Stochastic climate dynamics: Random attractors and time-dependent invariant measures, Phys. D, 240 (2011), 1685-1700.  doi: 10.1016/j.physd.2011.06.005.  Google Scholar

[12]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11. Taylor & Francis, London, 2002.  Google Scholar

[13]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

L. Dong, Invariant measures for the stochastic navier-stokes equation on a 2D rotating sphere with stable Lévy noise, arXiv e-prints, arXiv: 1812.05513. Google Scholar

[16]

L. Dong, Strong solutions for the stochastic Navier-Stokes equations on the 2D rotating sphere with stable Lévy noise, J. Math. Anal. Appl., 489 (2020), 124182, 37 pp. doi: 10.1016/j.jmaa.2020.124182.  Google Scholar

[17]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[18]

T. GaoJ. Duan and X. Li, Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions, Appl. Math. Comput., 278 (2016), 1-20.  doi: 10.1016/j.amc.2016.01.010.  Google Scholar

[19]

B. GessW. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253.  doi: 10.1016/j.jde.2011.02.013.  Google Scholar

[20]

G. A. Gottwald and D. T. Crommelin and C. L. E. Franzke, Stochastic climate theory, Nonlinear and Stochastic Climate Dynamics, Cambridge Univ. Press, Cambridge, (2017), 209–240.  Google Scholar

[21]

A. Gu, Synchronization of coupled stochastic systems driven by $\alpha$-stable Lévy noises, Math. Probl. Eng., 2013 (2013), Art. ID 685798, 10 pp. doi: 10.1155/2013/685798.  Google Scholar

[22]

A. Gu and W. Ai, Random attractor for stochastic lattice dynamical systems with $\alpha$-stable Lévy noises, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1433-1441.  doi: 10.1016/j.cnsns.2013.08.036.  Google Scholar

[23]

J. Huang, Y. Li and J. Duan, Random dynamics of the stochastic Boussinesq equations driven by Lévy noises, Abstr. Appl. Anal., 2013 (2013), Art. ID 653160, 10 pp. doi: 10.1155/2013/653160.  Google Scholar

[24]

M. Ledous and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer Science & Business Media, 2013. Google Scholar

[25]

F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of noise-induced Lévy walks of E. Coli, PLoS ONE, 6 (2011), e18623. doi: 10.1371/journal.pone.0018623.  Google Scholar

[26] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations With Lévy Noise, Encyclopedia of Mathematics and its Applications, 113. Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[27]

G. W. PetersS. A. Sisson and Y. Fan, Likelihood-free Bayesian inference for $\alpha$-stable models, Comput. Statist. Data Anal., 56 (2012), 3743-3756.  doi: 10.1016/j.csda.2010.10.004.  Google Scholar

[28]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processe, Probab. Theory Related Fields, 149 (2011), 97-137.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[29] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.   Google Scholar
[30]

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York, 1994.  Google Scholar

[31] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.   Google Scholar
[32]

L. Serdukova, Y. Zheng, J. Duan and J. Kurths, Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation, Scientific Reports, 7 (2017), Article number, 9336. doi: 10.1038/s41598-017-07686-8.  Google Scholar

[33]

M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, Springer, Heidelberg, 2014. doi: 10.1007/978-3-642-54075-2.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems, 1993. Google Scholar

[35]

L. Xu, Applications of a simple but useful technique to stochastic convolution of $\alpha$-stable processes, arXiv e-prints, arXiv: 1201.4260. Google Scholar

[36]

F. Yonezawa, Introduction to focused session on'anomalous relaxation', Journal of Non-Cryst. Solids, 198-200 (1996), 503-506.  doi: 10.1016/0022-3093(95)00726-1.  Google Scholar

[37]

Y. Zhang, Z. Cheng, X. Zhang, X. Chen, J. Duan and X. Li, Data assimilation and parameter estimation for a multiscale stochastic system with $\alpha$-stable Lévy noise, J. Stat. Mech. Theory Exp., 11 (2017), 113401, 17 pp. doi: 10.1088/1742-5468/aa9343.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy processes and stochastic integrals in Banach spaces, Probab. Math. Statist., 27 (2007), 75-88.   Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Science & Business Media, 2013. Google Scholar

[3]

J.-P. Bouchaud and A. George, Anomalous diffusion in disordered media: Statistic mechanics, models and physical applications, Phys. Rep, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[4]

Z. Brzeźiak, Asymptotic compactness and absorbing sets for stochastic Burgers' equations driven by space-time white noise and for some two-dimensional stochastic Navier-Stokes equations on certain unbounded domains, Stochastic Partial Differential Equations and Applications–VII, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 245 (2006), 35–52.  Google Scholar

[5]

Z. BrzeźniakM. Capiński and F. Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Related Fields, 95 (1993), 87-102.  doi: 10.1007/BF01197339.  Google Scholar

[6]

Z. BrzeźiakB. Goldys and Q. T. Le Gia, Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere, J. Math. Anal. Appl., 426 (2015), 505-545.  doi: 10.1016/j.jmaa.2015.01.054.  Google Scholar

[7]

Z. BrzeźiakB. Goldys and Q. T. Le Gia, Random attractors for the stochastic Navier–Stokes equations on the 2D unit sphere, J. Math. Fluid Mech., 20 (2018), 227-253.  doi: 10.1007/s00021-017-0351-4.  Google Scholar

[8]

Z. Brzeźiak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587-5629.  doi: 10.1090/S0002-9947-06-03923-7.  Google Scholar

[9]

Z. Brzeźiak and J. Zabczyk, Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise, Potential Anal., 32 (2010), 153-188.  doi: 10.1007/s11118-009-9149-1.  Google Scholar

[10]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580. Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[11]

M. D. ChekrounE. Simonnet and M. Ghil, Stochastic climate dynamics: Random attractors and time-dependent invariant measures, Phys. D, 240 (2011), 1685-1700.  doi: 10.1016/j.physd.2011.06.005.  Google Scholar

[12]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11. Taylor & Francis, London, 2002.  Google Scholar

[13]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

L. Dong, Invariant measures for the stochastic navier-stokes equation on a 2D rotating sphere with stable Lévy noise, arXiv e-prints, arXiv: 1812.05513. Google Scholar

[16]

L. Dong, Strong solutions for the stochastic Navier-Stokes equations on the 2D rotating sphere with stable Lévy noise, J. Math. Anal. Appl., 489 (2020), 124182, 37 pp. doi: 10.1016/j.jmaa.2020.124182.  Google Scholar

[17]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[18]

T. GaoJ. Duan and X. Li, Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions, Appl. Math. Comput., 278 (2016), 1-20.  doi: 10.1016/j.amc.2016.01.010.  Google Scholar

[19]

B. GessW. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011), 1225-1253.  doi: 10.1016/j.jde.2011.02.013.  Google Scholar

[20]

G. A. Gottwald and D. T. Crommelin and C. L. E. Franzke, Stochastic climate theory, Nonlinear and Stochastic Climate Dynamics, Cambridge Univ. Press, Cambridge, (2017), 209–240.  Google Scholar

[21]

A. Gu, Synchronization of coupled stochastic systems driven by $\alpha$-stable Lévy noises, Math. Probl. Eng., 2013 (2013), Art. ID 685798, 10 pp. doi: 10.1155/2013/685798.  Google Scholar

[22]

A. Gu and W. Ai, Random attractor for stochastic lattice dynamical systems with $\alpha$-stable Lévy noises, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1433-1441.  doi: 10.1016/j.cnsns.2013.08.036.  Google Scholar

[23]

J. Huang, Y. Li and J. Duan, Random dynamics of the stochastic Boussinesq equations driven by Lévy noises, Abstr. Appl. Anal., 2013 (2013), Art. ID 653160, 10 pp. doi: 10.1155/2013/653160.  Google Scholar

[24]

M. Ledous and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer Science & Business Media, 2013. Google Scholar

[25]

F. Matthäus, M. S. Mommer, T. Curk and J. Dobnikar, On the origin and characteristics of noise-induced Lévy walks of E. Coli, PLoS ONE, 6 (2011), e18623. doi: 10.1371/journal.pone.0018623.  Google Scholar

[26] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations With Lévy Noise, Encyclopedia of Mathematics and its Applications, 113. Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511721373.  Google Scholar
[27]

G. W. PetersS. A. Sisson and Y. Fan, Likelihood-free Bayesian inference for $\alpha$-stable models, Comput. Statist. Data Anal., 56 (2012), 3743-3756.  doi: 10.1016/j.csda.2010.10.004.  Google Scholar

[28]

E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processe, Probab. Theory Related Fields, 149 (2011), 97-137.  doi: 10.1007/s00440-009-0243-5.  Google Scholar

[29] J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.   Google Scholar
[30]

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York, 1994.  Google Scholar

[31] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.   Google Scholar
[32]

L. Serdukova, Y. Zheng, J. Duan and J. Kurths, Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation, Scientific Reports, 7 (2017), Article number, 9336. doi: 10.1038/s41598-017-07686-8.  Google Scholar

[33]

M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, Springer, Heidelberg, 2014. doi: 10.1007/978-3-642-54075-2.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems, 1993. Google Scholar

[35]

L. Xu, Applications of a simple but useful technique to stochastic convolution of $\alpha$-stable processes, arXiv e-prints, arXiv: 1201.4260. Google Scholar

[36]

F. Yonezawa, Introduction to focused session on'anomalous relaxation', Journal of Non-Cryst. Solids, 198-200 (1996), 503-506.  doi: 10.1016/0022-3093(95)00726-1.  Google Scholar

[37]

Y. Zhang, Z. Cheng, X. Zhang, X. Chen, J. Duan and X. Li, Data assimilation and parameter estimation for a multiscale stochastic system with $\alpha$-stable Lévy noise, J. Stat. Mech. Theory Exp., 11 (2017), 113401, 17 pp. doi: 10.1088/1742-5468/aa9343.  Google Scholar

[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[5]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[6]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[7]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[8]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[9]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[13]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[16]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[17]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[18]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[19]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[20]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (18)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]