-
Previous Article
On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type
- DCDS-B Home
- This Issue
-
Next Article
Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise
Norm inflation for the Boussinesq system
1. | Department of Mathematics, Rutgers University, Hill Center - Busch Campus 110 Frelinghuysen Road, Piscataway, NJ 08854, USA |
2. | Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721, USA |
We prove the norm inflation phenomena for the Boussinesq system on $ \mathbb T^3 $. For arbitrarily small initial data $ (u_0,\rho_0) $ in the negative-order Besov spaces $ \dot{B}^{-1}_{\infty, \infty} \times \dot{B}^{-1}_{\infty, \infty} $, the solution can become arbitrarily large in a short time. Such largeness can be detected in $ \rho $ in Besov spaces of any negative order: $ \dot{B}^{-s}_{\infty, \infty} $ for any $ s>0 $.
References:
[1] |
J. Bourgain and N. Pavlović,
Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.
doi: 10.1016/j.jfa.2008.07.008. |
[2] |
L. Brandolese and J. He,
Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.
doi: 10.2748/tmj/1593136822. |
[3] |
L. Brandolese and C. Mouzouni,
A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.
doi: 10.1007/s00332-017-9379-0. |
[4] |
C. Cao and J. Wu,
Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[5] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[6] |
R. M. Chen and Y. Liu,
On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.
doi: 10.1007/s11854-013-0037-7. |
[7] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.
doi: 10.1512/iumj.2014.63.5249. |
[8] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.
doi: 10.1088/0951-7715/28/1/129. |
[9] |
M. Dai, J. Qing and M. E. Schonbek,
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$ , Adv. Differential Equations, 16 (2011), 725-746.
|
[10] |
C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511608803.![]() ![]() ![]() |
[11] |
D.-A. Geba, A. A. Himonasb and D. Karapetyana,
Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.
doi: 10.1016/j.na.2013.09.017. |
[12] |
T. Hmidi and S. Keraani,
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.
|
[13] |
T. Y. Hou and C. Li,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[16] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[17] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[18] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[19] |
A. Stefanov and J. Wu,
A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.
doi: 10.1007/s11854-018-0073-4. |
[20] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition.
doi: 10.1090/chel/343. |
[21] |
W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp.
doi: 10.1007/s00033-019-1221-0. |
[22] |
W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020. |
[23] |
W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. |
[24] |
W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. |
[25] |
W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. |
[26] |
W. Wang and H. Yue,
Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.
doi: 10.4310/DPDE.2020.v17.n2.a4. |
[27] |
T. Yoneda,
Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.
doi: 10.1016/j.jfa.2010.02.005. |
show all references
References:
[1] |
J. Bourgain and N. Pavlović,
Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.
doi: 10.1016/j.jfa.2008.07.008. |
[2] |
L. Brandolese and J. He,
Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.
doi: 10.2748/tmj/1593136822. |
[3] |
L. Brandolese and C. Mouzouni,
A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.
doi: 10.1007/s00332-017-9379-0. |
[4] |
C. Cao and J. Wu,
Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[5] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[6] |
R. M. Chen and Y. Liu,
On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.
doi: 10.1007/s11854-013-0037-7. |
[7] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.
doi: 10.1512/iumj.2014.63.5249. |
[8] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.
doi: 10.1088/0951-7715/28/1/129. |
[9] |
M. Dai, J. Qing and M. E. Schonbek,
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$ , Adv. Differential Equations, 16 (2011), 725-746.
|
[10] |
C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511608803.![]() ![]() ![]() |
[11] |
D.-A. Geba, A. A. Himonasb and D. Karapetyana,
Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.
doi: 10.1016/j.na.2013.09.017. |
[12] |
T. Hmidi and S. Keraani,
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.
|
[13] |
T. Y. Hou and C. Li,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[16] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[17] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[18] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[19] |
A. Stefanov and J. Wu,
A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.
doi: 10.1007/s11854-018-0073-4. |
[20] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition.
doi: 10.1090/chel/343. |
[21] |
W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp.
doi: 10.1007/s00033-019-1221-0. |
[22] |
W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020. |
[23] |
W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. |
[24] |
W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. |
[25] |
W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. |
[26] |
W. Wang and H. Yue,
Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.
doi: 10.4310/DPDE.2020.v17.n2.a4. |
[27] |
T. Yoneda,
Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.
doi: 10.1016/j.jfa.2010.02.005. |
[1] |
Adán J. Corcho. Ill-Posedness for the Benney system. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 965-972. doi: 10.3934/dcds.2006.15.965 |
[2] |
Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395 |
[3] |
G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327 |
[4] |
Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129 |
[5] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[6] |
Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253 |
[7] |
Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565 |
[8] |
Piero D'Ancona, Mamoru Okamoto. Blowup and ill-posedness results for a Dirac equation without gauge invariance. Evolution Equations and Control Theory, 2016, 5 (2) : 225-234. doi: 10.3934/eect.2016002 |
[9] |
In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012 |
[10] |
Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287 |
[11] |
Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863 |
[12] |
Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure and Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727 |
[13] |
Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341 |
[14] |
Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395 |
[15] |
Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395 |
[16] |
Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287 |
[17] |
Claudia Valls. Stability of some waves in the Boussinesq system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 929-939. doi: 10.3934/cpaa.2006.5.929 |
[18] |
Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic and Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019 |
[19] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[20] |
Vladimir Angulo-Castillo, Lucas C. F. Ferreira. Long-time solvability in Besov spaces for the inviscid 3D-Boussinesq-Coriolis equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4553-4573. doi: 10.3934/dcdsb.2020112 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]