-
Previous Article
The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
- DCDS-B Home
- This Issue
-
Next Article
A theoretical approach to understanding rumor propagation dynamics in a spatially heterogeneous environment
Norm inflation for the Boussinesq system
1. | Department of Mathematics, Rutgers University, Hill Center - Busch Campus 110 Frelinghuysen Road, Piscataway, NJ 08854, USA |
2. | Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ 85721, USA |
We prove the norm inflation phenomena for the Boussinesq system on $ \mathbb T^3 $. For arbitrarily small initial data $ (u_0,\rho_0) $ in the negative-order Besov spaces $ \dot{B}^{-1}_{\infty, \infty} \times \dot{B}^{-1}_{\infty, \infty} $, the solution can become arbitrarily large in a short time. Such largeness can be detected in $ \rho $ in Besov spaces of any negative order: $ \dot{B}^{-s}_{\infty, \infty} $ for any $ s>0 $.
References:
[1] |
J. Bourgain and N. Pavlović,
Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.
doi: 10.1016/j.jfa.2008.07.008. |
[2] |
L. Brandolese and J. He,
Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.
doi: 10.2748/tmj/1593136822. |
[3] |
L. Brandolese and C. Mouzouni,
A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.
doi: 10.1007/s00332-017-9379-0. |
[4] |
C. Cao and J. Wu,
Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[5] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[6] |
R. M. Chen and Y. Liu,
On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.
doi: 10.1007/s11854-013-0037-7. |
[7] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.
doi: 10.1512/iumj.2014.63.5249. |
[8] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.
doi: 10.1088/0951-7715/28/1/129. |
[9] |
M. Dai, J. Qing and M. E. Schonbek,
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$ , Adv. Differential Equations, 16 (2011), 725-746.
|
[10] |
C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511608803.![]() ![]() |
[11] |
D.-A. Geba, A. A. Himonasb and D. Karapetyana,
Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.
doi: 10.1016/j.na.2013.09.017. |
[12] |
T. Hmidi and S. Keraani,
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.
|
[13] |
T. Y. Hou and C. Li,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[16] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[17] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[18] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[19] |
A. Stefanov and J. Wu,
A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.
doi: 10.1007/s11854-018-0073-4. |
[20] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition.
doi: 10.1090/chel/343. |
[21] |
W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp.
doi: 10.1007/s00033-019-1221-0. |
[22] |
W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020. |
[23] |
W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. Google Scholar |
[24] |
W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. Google Scholar |
[25] |
W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. Google Scholar |
[26] |
W. Wang and H. Yue,
Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.
doi: 10.4310/DPDE.2020.v17.n2.a4. |
[27] |
T. Yoneda,
Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.
doi: 10.1016/j.jfa.2010.02.005. |
show all references
References:
[1] |
J. Bourgain and N. Pavlović,
Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.
doi: 10.1016/j.jfa.2008.07.008. |
[2] |
L. Brandolese and J. He,
Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), 72 (2020), 283-297.
doi: 10.2748/tmj/1593136822. |
[3] |
L. Brandolese and C. Mouzouni,
A short proof of the large time energy growth for the Boussinesq system, J. Nonlinear Sci., 27 (2017), 1589-1608.
doi: 10.1007/s00332-017-9379-0. |
[4] |
C. Cao and J. Wu,
Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.
doi: 10.1007/s00205-013-0610-3. |
[5] |
D. Chae,
Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[6] |
R. M. Chen and Y. Liu,
On the ill-posedness of a weakly dispersive one-dimensional Boussinesq system, J. Anal. Math., 121 (2013), 299-316.
doi: 10.1007/s11854-013-0037-7. |
[7] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Navier-Stokes equations, Indiana Univ. Math. J., 63 (2014), 869-884.
doi: 10.1512/iumj.2014.63.5249. |
[8] |
A. Cheskidov and M. Dai,
Norm inflation for generalized Magneto-hydrodynamic system, Nonlinearity, 28 (2015), 129-142.
doi: 10.1088/0951-7715/28/1/129. |
[9] |
M. Dai, J. Qing and M. E. Schonbek,
Norm inflation for incompressible magneto-hydrodynamic system in $\dot{B}^{-1}_{\infty, \infty}$ , Adv. Differential Equations, 16 (2011), 725-746.
|
[10] |
C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511608803.![]() ![]() |
[11] |
D.-A. Geba, A. A. Himonasb and D. Karapetyana,
Ill-posedness results for generalized Boussinesq equations, Non. Anal., 95 (2014), 404-413.
doi: 10.1016/j.na.2013.09.017. |
[12] |
T. Hmidi and S. Keraani,
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461-480.
|
[13] |
T. Y. Hou and C. Li,
Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.
doi: 10.3934/dcds.2005.12.1. |
[14] |
H. Koch and D. Tataru,
Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[15] |
I. Kukavica and W. Wang,
Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27-45.
|
[16] |
I. Kukavica and W. Wang,
Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dynam. Differential Equations, 32 (2020), 2061-2077.
doi: 10.1007/s10884-019-09802-w. |
[17] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[18] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[19] |
A. Stefanov and J. Wu,
A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269-290.
doi: 10.1007/s11854-018-0073-4. |
[20] |
R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, reprint of the 1984 edition.
doi: 10.1090/chel/343. |
[21] |
W. Wang, On the global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 70 (2019), Paper No. 174, 6 pp.
doi: 10.1007/s00033-019-1221-0. |
[22] |
W. Wang, Regularity Problems for the Boussinesq Equations, Ph.D. Dissertation, University of Southern California, 2020. |
[23] |
W. Wang, On the analyticity and Gevrey regularity of solutions to the three-dimensional inviscid Boussinesq equations in a half space, submitted for publication. Google Scholar |
[24] |
W. Wang, On the global stability of large solutions for the Boussinesq equations with Navier boundary conditions, submitted for publication. Google Scholar |
[25] |
W. Wang and H. Yue, Time decay of almost-sure global weak solutions to the Navier–Stokes and the MHD equations with initial data in negative-order Sobolev spaces, submitted for publication. Google Scholar |
[26] |
W. Wang and H. Yue,
Almost sure existence of global weak solutions for the Boussinesq equations, Dyn. Partial Differ. Equ., 17 (2020), 165-183.
doi: 10.4310/DPDE.2020.v17.n2.a4. |
[27] |
T. Yoneda,
Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near $\rm BMO^{-1}$, J. Func. Anal., 258 (2010), 3376-3387.
doi: 10.1016/j.jfa.2010.02.005. |
[1] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[2] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[3] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[4] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[5] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[6] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[7] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[8] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[9] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[10] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[11] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[12] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[13] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[14] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[15] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[16] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[17] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[18] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[19] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[20] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]