We study for nonlinear Kirchhoff's model of pseudo parabolic type by considering its two different problems.
$ \bullet $ For initial value problem, we obtain the results on the existence and regularity of solutions. Moreover, we also prove that the solutions $ u $ corresponding with $ \beta < 1 $ of the problem convergence to $ u $ for $ \beta = 1 $.
$ \bullet $ For final value problem, we show that the ill-posed property in the sense of Hadamard is occurring. Using the Fourier truncation method to regularize the problem. We establish some stability estimates in the $ H^1 $ and $ L^p $ norms under some a-priori conditions on the sought solution.
Citation: |
[1] |
R. M. P. Almeida, S. N. Antontsev and J. C. M. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. RWA, 27 (2016), 146-157.
doi: 10.1016/j.nonrwa.2015.07.015.![]() ![]() ![]() |
[2] |
V. V. Au, M. Kirane and N. H. Tuan, On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms, Discrete Contin. Dyn. Syst. Ser. B, 174 (2020), 27 pages.
![]() |
[3] |
G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.
doi: 10.1016/j.na.2010.05.024.![]() ![]() ![]() |
[4] |
G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.
doi: 10.1007/s00205-009-0241-x.![]() ![]() ![]() |
[5] |
C. Cao, M. A. Rammaha and E. S. Titi, The Navier-Stokes equations on the rotating $2$-D sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50 (1999), 341-360.
doi: 10.1007/PL00001493.![]() ![]() ![]() |
[6] |
T. Caraballo, H. Crauel, J. A. Langa and J. C. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc., 135 (2007), 373-382.
doi: 10.1090/S0002-9939-06-08593-5.![]() ![]() ![]() |
[7] |
T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.
doi: 10.3934/dcdsb.2017107.![]() ![]() ![]() |
[8] |
T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.
doi: 10.1016/j.na.2014.07.011.![]() ![]() ![]() |
[9] |
T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.
doi: 10.1007/s11071-015-2200-4.![]() ![]() ![]() |
[10] |
T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Global attractor for a nonlocal $p$-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1801-1816.
doi: 10.3934/dcdsb.2017107.![]() ![]() ![]() |
[11] |
T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, Asymptotic behaviour of nonlocal $p$-Laplacian reaction-diffusion problems, J. Math. Anal. Appl., 459 (2018), 997-1015.
doi: 10.1016/j.jmaa.2017.11.013.![]() ![]() ![]() |
[12] |
T. Caraballo, J. A. Langa and J. Valero, Extremal bounded complete trajectories for nonautonomous reaction-diffusion equations with discontinuous forcing term, Rev. Mat. Complut., 33 (2020), 583-617.
doi: 10.1007/s13163-019-00323-0.![]() ![]() ![]() |
[13] |
A. S. Carasso, J. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344-367.
doi: 10.1137/0715023.![]() ![]() ![]() |
[14] |
A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.
doi: 10.1016/j.jde.2007.01.017.![]() ![]() ![]() |
[15] |
N.-H. Chang and M. Chipot, Nonlinear nonlocal evolution problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 423-445.
![]() ![]() |
[16] |
M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996), Nonlinear Analysis: TMA, $\mathsf{30}$ (1997), 4619–4627.
doi: 10.1016/S0362-546X(97)00169-7.![]() ![]() ![]() |
[17] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.
doi: 10.1016/j.jde.2011.08.022.![]() ![]() ![]() |
[18] |
L. Dawidowski, The quasilinear parabolic Kirchhoff equation, Open Math., 15 (2017), 382-392.
![]() ![]() |
[19] |
Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.
doi: 10.1080/00036811.2015.1022153.![]() ![]() ![]() |
[20] |
M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: Time-decay estimates, J. Differential Equations, 245 (2008), 2979-3007.
doi: 10.1016/j.jde.2008.04.017.![]() ![]() ![]() |
[21] |
M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation, Math. Ann., 354 (2012), 1079-1102.
doi: 10.1007/s00208-011-0765-x.![]() ![]() ![]() |
[22] |
M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.
doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7.![]() ![]() ![]() |
[23] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.
![]() ![]() |
[24] |
S. Kundu, K. A. Pani and M. Khebchareon, On Kirchhoff's model of parabolic type, Numer. Funct. Anal. Optim., 37 (2016), 719-752.
doi: 10.1080/01630563.2016.1176930.![]() ![]() ![]() |
[25] |
Z. Liu and S. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287.
doi: 10.1016/j.jmaa.2015.01.044.![]() ![]() ![]() |
[26] |
L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, I., J. Comput. Anal. Appl., 4 (2002), 91-127.
doi: 10.1023/A:1012934900316.![]() ![]() ![]() |
[27] |
X. Mingqi, V. D. Rǎdulescu and B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.
doi: 10.1088/1361-6544/aaba35.![]() ![]() ![]() |
[28] |
X. Peng, Y. Shang and X. Zheng, Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion, Z. Angew. Math. Phys., 69 (2018), Paper No. 110, 14 pp.
doi: 10.1007/s00033-018-1005-y.![]() ![]() ![]() |
[29] |
C. A. Raposo, M. Sepúlveda, O. V. Villagrán, D. C. Pereira and M. L. Santos, Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102 (2008), 37-56.
doi: 10.1007/s10440-008-9207-5.![]() ![]() ![]() |
[30] |
J. Simsen and J. Ferreira, A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21 (2014), 405-416.
![]() ![]() |
[31] |
T. H. Skaggs and Z. J. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility, Water Resources Research., 31 (1995), 2669-2673.
![]() |
[32] |
N. H. Tuan, V. A. Khoa and V. A. Vo, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements, SIAM J. Math. Anal., 51 (2019), 60-85.
doi: 10.1137/18M1174064.![]() ![]() ![]() |
[33] |
N. H. Tuan, D. H. Q. Nam and T. M. N. Vo, On a backward problem for the Kirchhoff's model of parabolic type, Comput. Math. Appl., 77 (2019), 15-33.
doi: 10.1016/j.camwa.2018.08.072.![]() ![]() ![]() |
[34] |
N. H. Tuan, V. A. Vo, V. A. Khoa and D. Lesnic, Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction, Inverse Problems, 33 (2017), 055019, 40 pp.
doi: 10.1088/1361-6420/aa635f.![]() ![]() ![]() |
[35] |
S. Zheng and M. Chipot, Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45 (2005), 301-312.
![]() ![]() |