doi: 10.3934/dcdsb.2020355

High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation

1. 

Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran

2. 

Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria, 6-95125 Catania, Italy

3. 

RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia

* Corresponding author: Maria Alessandra Ragusa

Received  June 2020 Revised  September 2020 Published  December 2020

In this paper, by combining of fractional centered difference approach with alternating direction implicit method, we introduce a mixed difference method for solving two-dimensional Riesz space fractional advection-dispersion equation. The proposed method is a fourth order centered difference operator in spatial directions and second order Crank-Nicolson method in temporal direction. By reviewing the consistency and stability of the method, the convergence of the proposed method is achieved. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed technique.

Citation: Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020355
References:
[1]

S. Abdi-MazraehM. Lakestani and M. Dehghan, The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets, J. Vib. Control, 21 (2015), 818-832.  doi: 10.1177/1077546313490430.  Google Scholar

[2]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water Resour. Res., 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.  Google Scholar

[3]

B. BaeumerD. A. BensonM. M. Meerschaert and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37 (2001), 1543-1550.  doi: 10.1029/2000WR900409.  Google Scholar

[4]

D. A. BensonS. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403-1412.  doi: 10.1029/2000WR900031.  Google Scholar

[5]

C. Çelik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743-1750.  doi: 10.1016/j.jcp.2011.11.008.  Google Scholar

[6]

S. Chen and F. Liu, ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation, J. Appl. Math. Comput., 26 (2008), 295-311.  doi: 10.1007/s12190-007-0013-4.  Google Scholar

[7]

H. Ding and C. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71 (2017), 759-784.  doi: 10.1007/s10915-016-0317-3.  Google Scholar

[8]

H. DingC. Li and Y. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys., 293 (2015), 218-237.  doi: 10.1016/j.jcp.2014.06.007.  Google Scholar

[9]

H.-F. Ding and Y.-X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63 (2012), 1135-1146.  doi: 10.1016/j.camwa.2011.12.028.  Google Scholar

[10]

S. GalaQ. Liu and M. A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Appl. Anal., 91 (2012), 1741-1747.  doi: 10.1080/00036811.2011.581233.  Google Scholar

[11]

S. Gala and M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 95 (2016), 1271-1279.  doi: 10.1080/00036811.2015.1061122.  Google Scholar

[12]

R. Gorenflo and F. Mainardi, Approximation of Lévy-Feller diffusion by random walk models, Z. Anal. Anwendungen, 18 (1999), 231-246.  doi: 10.4171/ZAA/879.  Google Scholar

[13]

S. Irandoust-PakchinM. DehghanS. Abdi-Mazraeh and M. Lakestani, Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets, J. Vib. Control, 20 (2014), 913-924.  doi: 10.1177/1077546312470473.  Google Scholar

[14]

M. LakestaniM. Dehghan and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1149-1162.  doi: 10.1016/j.cnsns.2011.07.018.  Google Scholar

[15]

J. Manafian and M. Lakestani, A new analytical approach to solve some of the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243-258.  doi: 10.1007/s12648-016-0912-z.  Google Scholar

[16]

C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.  Google Scholar

[17]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM J. Control Optim., 44 (2006), 1950-1972.  doi: 10.1137/S036301290444263X.  Google Scholar

[18]

D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math., 3 (1955), 28-41.  doi: 10.1137/0103003.  Google Scholar

[19] I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[20]

S. Polidoro and M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoam., 24 (2008), 1011-1046.  doi: 10.4171/RMI/565.  Google Scholar

[21]

M. Popolizio, A matrix approach for partial differential equations with Riesz space fractional derivatives, Eur. Phys. J. Special Topics, 222 (2013), 1975-1985.  doi: 10.1140/epjst/e2013-01978-8.  Google Scholar

[22]

Y. Povstenko, T. Kyrylych and G. Rygał, Fractional diffusion in a solid with mass absorption, Entropy, 19 (2017), 203. doi: 10.3390/e19050203.  Google Scholar

[23]

M. RahmanA. Mahmood and M. Younis, Improved and more feasible numerical methods for Riesz space fractional partial differential equations, Appl. Math. Comput., 237 (2014), 264-273.  doi: 10.1016/j.amc.2014.03.103.  Google Scholar

[24]

S. ShenF. LiuV. Anh and I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 73 (2008), 850-872.  doi: 10.1093/imamat/hxn033.  Google Scholar

[25]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[26]

J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 22. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4899-7278-1.  Google Scholar

[27]

F. J. Valdes-ParadaJ. A. Ochoa-Tapia and J. Alvarez-Ramirez, Effective medium equations for fractional Fick's law in porous media, Physica A: Statistical Mechanics and its Applications, 373 (2007), 339-353.  doi: 10.1016/j.physa.2006.06.007.  Google Scholar

[28]

S. Valizadeh and A. Borhanifar, Numerical solution for Riesz fractional diffusion equation via fractional centered difference scheme, Walailak J. Sci. Tech., 2020, Accepted. Google Scholar

[29]

F. ZengF. LiuC. LiK. BurrageI. Turner and V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space farctional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599-2622.  doi: 10.1137/130934192.  Google Scholar

[30]

Y. Zhang and H. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation, J. Comput. Appl. Math., 260 (2014), 266-280.  doi: 10.1016/j.cam.2013.09.040.  Google Scholar

[31]

Y. Zhang and H. Ding, High-order algorithm for the two-dimension Riesz space-fractional diffusion equation, Int. J. Comput. Math., 94 (2017), 2063-2073.  doi: 10.1080/00207160.2016.1274746.  Google Scholar

show all references

References:
[1]

S. Abdi-MazraehM. Lakestani and M. Dehghan, The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets, J. Vib. Control, 21 (2015), 818-832.  doi: 10.1177/1077546313490430.  Google Scholar

[2]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water Resour. Res., 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.  Google Scholar

[3]

B. BaeumerD. A. BensonM. M. Meerschaert and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37 (2001), 1543-1550.  doi: 10.1029/2000WR900409.  Google Scholar

[4]

D. A. BensonS. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403-1412.  doi: 10.1029/2000WR900031.  Google Scholar

[5]

C. Çelik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743-1750.  doi: 10.1016/j.jcp.2011.11.008.  Google Scholar

[6]

S. Chen and F. Liu, ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation, J. Appl. Math. Comput., 26 (2008), 295-311.  doi: 10.1007/s12190-007-0013-4.  Google Scholar

[7]

H. Ding and C. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71 (2017), 759-784.  doi: 10.1007/s10915-016-0317-3.  Google Scholar

[8]

H. DingC. Li and Y. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys., 293 (2015), 218-237.  doi: 10.1016/j.jcp.2014.06.007.  Google Scholar

[9]

H.-F. Ding and Y.-X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63 (2012), 1135-1146.  doi: 10.1016/j.camwa.2011.12.028.  Google Scholar

[10]

S. GalaQ. Liu and M. A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Appl. Anal., 91 (2012), 1741-1747.  doi: 10.1080/00036811.2011.581233.  Google Scholar

[11]

S. Gala and M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 95 (2016), 1271-1279.  doi: 10.1080/00036811.2015.1061122.  Google Scholar

[12]

R. Gorenflo and F. Mainardi, Approximation of Lévy-Feller diffusion by random walk models, Z. Anal. Anwendungen, 18 (1999), 231-246.  doi: 10.4171/ZAA/879.  Google Scholar

[13]

S. Irandoust-PakchinM. DehghanS. Abdi-Mazraeh and M. Lakestani, Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets, J. Vib. Control, 20 (2014), 913-924.  doi: 10.1177/1077546312470473.  Google Scholar

[14]

M. LakestaniM. Dehghan and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1149-1162.  doi: 10.1016/j.cnsns.2011.07.018.  Google Scholar

[15]

J. Manafian and M. Lakestani, A new analytical approach to solve some of the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243-258.  doi: 10.1007/s12648-016-0912-z.  Google Scholar

[16]

C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.  Google Scholar

[17]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM J. Control Optim., 44 (2006), 1950-1972.  doi: 10.1137/S036301290444263X.  Google Scholar

[18]

D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math., 3 (1955), 28-41.  doi: 10.1137/0103003.  Google Scholar

[19] I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[20]

S. Polidoro and M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoam., 24 (2008), 1011-1046.  doi: 10.4171/RMI/565.  Google Scholar

[21]

M. Popolizio, A matrix approach for partial differential equations with Riesz space fractional derivatives, Eur. Phys. J. Special Topics, 222 (2013), 1975-1985.  doi: 10.1140/epjst/e2013-01978-8.  Google Scholar

[22]

Y. Povstenko, T. Kyrylych and G. Rygał, Fractional diffusion in a solid with mass absorption, Entropy, 19 (2017), 203. doi: 10.3390/e19050203.  Google Scholar

[23]

M. RahmanA. Mahmood and M. Younis, Improved and more feasible numerical methods for Riesz space fractional partial differential equations, Appl. Math. Comput., 237 (2014), 264-273.  doi: 10.1016/j.amc.2014.03.103.  Google Scholar

[24]

S. ShenF. LiuV. Anh and I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 73 (2008), 850-872.  doi: 10.1093/imamat/hxn033.  Google Scholar

[25]

C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823.  doi: 10.1016/j.jcp.2006.05.030.  Google Scholar

[26]

J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 22. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4899-7278-1.  Google Scholar

[27]

F. J. Valdes-ParadaJ. A. Ochoa-Tapia and J. Alvarez-Ramirez, Effective medium equations for fractional Fick's law in porous media, Physica A: Statistical Mechanics and its Applications, 373 (2007), 339-353.  doi: 10.1016/j.physa.2006.06.007.  Google Scholar

[28]

S. Valizadeh and A. Borhanifar, Numerical solution for Riesz fractional diffusion equation via fractional centered difference scheme, Walailak J. Sci. Tech., 2020, Accepted. Google Scholar

[29]

F. ZengF. LiuC. LiK. BurrageI. Turner and V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space farctional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599-2622.  doi: 10.1137/130934192.  Google Scholar

[30]

Y. Zhang and H. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation, J. Comput. Appl. Math., 260 (2014), 266-280.  doi: 10.1016/j.cam.2013.09.040.  Google Scholar

[31]

Y. Zhang and H. Ding, High-order algorithm for the two-dimension Riesz space-fractional diffusion equation, Int. J. Comput. Math., 94 (2017), 2063-2073.  doi: 10.1080/00207160.2016.1274746.  Google Scholar

Table 1.  The maximum errors and convergence rates for the modified Crank-Nicolson ADI method for solving two dimensional RSFADE with halved spatial step sizes and $ \mathit{k}_{t} = 0.001 $
Maximum Estimated
$ \mathit{h}_{x}=\mathit{h}_{y} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 3.19826e-003 $ -
$ 0.05000 $ $ 2.61740e-004 $ $ 3.61108 $
$ 0.02500 $ $ 1.90572e-005 $ $ 3.77973 $
$ 0.01250 $ $ 1.33477e-006 $ $ 3.83567 $
$ 0.00625 $ $ 8.92357e-008 $ $ 3.90283 $
Maximum Estimated
$ \mathit{h}_{x}=\mathit{h}_{y} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 3.19826e-003 $ -
$ 0.05000 $ $ 2.61740e-004 $ $ 3.61108 $
$ 0.02500 $ $ 1.90572e-005 $ $ 3.77973 $
$ 0.01250 $ $ 1.33477e-006 $ $ 3.83567 $
$ 0.00625 $ $ 8.92357e-008 $ $ 3.90283 $
Table 2.  The maximum errors and convergence rates for the modified Crank-Nicolson ADI method for solving two dimensional RSFADE with halved temporal step sizes and $ \mathit{h}_{x} = \mathit{h}_{y} = 0.001 $
Maximum Estimated
$ \mathit{k}_{t} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 3.77425e-003 $ -
$ 0.05000 $ $ 1.20417e-003 $ $ 1.64815 $
$ 0.02500 $ $ 3.55418e-004 $ $ 1.76045 $
$ 0.01250 $ $ 1.02360e-004 $ $ 1.79586 $
$ 0.00625 $ $ 2.69907e-005 $ $ 1.92312 $
Maximum Estimated
$ \mathit{k}_{t} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 3.77425e-003 $ -
$ 0.05000 $ $ 1.20417e-003 $ $ 1.64815 $
$ 0.02500 $ $ 3.55418e-004 $ $ 1.76045 $
$ 0.01250 $ $ 1.02360e-004 $ $ 1.79586 $
$ 0.00625 $ $ 2.69907e-005 $ $ 1.92312 $
Table 3.  The maximum errors and convergence rates for the modified Crank-Nicolson ADI method for solving two dimensional RSFADE with halved spatial step sizes and $ \mathit{k}_{t} = 0.001 $
Maximum Estimated
$ \mathit{h}_{x}=\mathit{h}_{y} $ Absolute Error Convergence Rate
$ 0.10000\pi $ $ 3.26587e-004 $ -
$ 0.05000\pi $ $ 2.60038e-005 $ $ 3.65067 $
$ 0.02500\pi $ $ 1.81670e-006 $ $ 3.83933 $
$ 0.01250\pi $ $ 1.26448e-007 $ $ 3.84471 $
$ 0.00625\pi $ $ 8.13028e-009 $ $ 3.95909 $
Maximum Estimated
$ \mathit{h}_{x}=\mathit{h}_{y} $ Absolute Error Convergence Rate
$ 0.10000\pi $ $ 3.26587e-004 $ -
$ 0.05000\pi $ $ 2.60038e-005 $ $ 3.65067 $
$ 0.02500\pi $ $ 1.81670e-006 $ $ 3.83933 $
$ 0.01250\pi $ $ 1.26448e-007 $ $ 3.84471 $
$ 0.00625\pi $ $ 8.13028e-009 $ $ 3.95909 $
Table 4.  The maximum errors and convergence rates for the modified Crank-Nicolson ADI method for solving two dimensional RSFADE with halved temporal step sizes and $ \mathit{h}_{x} = \mathit{h}_{y} = 0.001\pi $
Maximum Estimated
$ \mathit{k}_{t} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 4.79240e-003 $ -
$ 0.05000 $ $ 1.46420e-003 $ $ 1.71063 $
$ 0.02500 $ $ 4.21902e-004 $ $ 1.79513 $
$ 0.01250 $ $ 1.14998e-004 $ $ 1.87530 $
$ 0.00625 $ $ 2.95945e-005 $ $ 1.95821 $
Maximum Estimated
$ \mathit{k}_{t} $ Absolute Error Convergence Rate
$ 0.10000 $ $ 4.79240e-003 $ -
$ 0.05000 $ $ 1.46420e-003 $ $ 1.71063 $
$ 0.02500 $ $ 4.21902e-004 $ $ 1.79513 $
$ 0.01250 $ $ 1.14998e-004 $ $ 1.87530 $
$ 0.00625 $ $ 2.95945e-005 $ $ 1.95821 $
[1]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[2]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[3]

Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems & Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917

[4]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[5]

Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1783-1799. doi: 10.3934/jimo.2019029

[6]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

[7]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[8]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[9]

Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247

[10]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[11]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1173-1185. doi: 10.3934/jimo.2020016

[12]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[13]

Yan Gu, Nobuo Yamashita. Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 487-510. doi: 10.3934/naco.2020047

[14]

Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial & Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078

[15]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

[16]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[17]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[18]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[19]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[20]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (147)
  • Cited by (0)

[Back to Top]