[1]
|
S. Abdi-Mazraeh, M. Lakestani and M. Dehghan, The construction of operational matrices of integral and fractional integral using the flatlet oblique multiwavelets, J. Vib. Control, 21 (2015), 818-832.
doi: 10.1177/1077546313490430.
|
[2]
|
E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water Resour. Res., 28 (1992), 3293-3307.
doi: 10.1029/92WR01757.
|
[3]
|
B. Baeumer, D. A. Benson, M. M. Meerschaert and S. W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37 (2001), 1543-1550.
doi: 10.1029/2000WR900409.
|
[4]
|
D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403-1412.
doi: 10.1029/2000WR900031.
|
[5]
|
C. Çelik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743-1750.
doi: 10.1016/j.jcp.2011.11.008.
|
[6]
|
S. Chen and F. Liu, ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation, J. Appl. Math. Comput., 26 (2008), 295-311.
doi: 10.1007/s12190-007-0013-4.
|
[7]
|
H. Ding and C. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput., 71 (2017), 759-784.
doi: 10.1007/s10915-016-0317-3.
|
[8]
|
H. Ding, C. Li and Y. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys., 293 (2015), 218-237.
doi: 10.1016/j.jcp.2014.06.007.
|
[9]
|
H.-F. Ding and Y.-X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63 (2012), 1135-1146.
doi: 10.1016/j.camwa.2011.12.028.
|
[10]
|
S. Gala, Q. Liu and M. A. Ragusa, A new regularity criterion for the nematic liquid crystal flows, Appl. Anal., 91 (2012), 1741-1747.
doi: 10.1080/00036811.2011.581233.
|
[11]
|
S. Gala and M. A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 95 (2016), 1271-1279.
doi: 10.1080/00036811.2015.1061122.
|
[12]
|
R. Gorenflo and F. Mainardi, Approximation of Lévy-Feller diffusion by random walk models, Z. Anal. Anwendungen, 18 (1999), 231-246.
doi: 10.4171/ZAA/879.
|
[13]
|
S. Irandoust-Pakchin, M. Dehghan, S. Abdi-Mazraeh and M. Lakestani, Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets, J. Vib. Control, 20 (2014), 913-924.
doi: 10.1177/1077546312470473.
|
[14]
|
M. Lakestani, M. Dehghan and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1149-1162.
doi: 10.1016/j.cnsns.2011.07.018.
|
[15]
|
J. Manafian and M. Lakestani, A new analytical approach to solve some of the fractional-order partial differential equations, Indian J. Phys., 91 (2017), 243-258.
doi: 10.1007/s12648-016-0912-z.
|
[16]
|
C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
|
[17]
|
S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM J. Control Optim., 44 (2006), 1950-1972.
doi: 10.1137/S036301290444263X.
|
[18]
|
D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math., 3 (1955), 28-41.
doi: 10.1137/0103003.
|
[19]
|
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
|
[20]
|
S. Polidoro and M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoam., 24 (2008), 1011-1046.
doi: 10.4171/RMI/565.
|
[21]
|
M. Popolizio, A matrix approach for partial differential equations with Riesz space fractional derivatives, Eur. Phys. J. Special Topics, 222 (2013), 1975-1985.
doi: 10.1140/epjst/e2013-01978-8.
|
[22]
|
Y. Povstenko, T. Kyrylych and G. Rygał, Fractional diffusion in a solid with mass absorption, Entropy, 19 (2017), 203.
doi: 10.3390/e19050203.
|
[23]
|
M. Rahman, A. Mahmood and M. Younis, Improved and more feasible numerical methods for Riesz space fractional partial differential equations, Appl. Math. Comput., 237 (2014), 264-273.
doi: 10.1016/j.amc.2014.03.103.
|
[24]
|
S. Shen, F. Liu, V. Anh and I. Turner, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA J. Appl. Math., 73 (2008), 850-872.
doi: 10.1093/imamat/hxn033.
|
[25]
|
C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823.
doi: 10.1016/j.jcp.2006.05.030.
|
[26]
|
J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 22. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4899-7278-1.
|
[27]
|
F. J. Valdes-Parada, J. A. Ochoa-Tapia and J. Alvarez-Ramirez, Effective medium equations for fractional Fick's law in porous media, Physica A: Statistical Mechanics and its Applications, 373 (2007), 339-353.
doi: 10.1016/j.physa.2006.06.007.
|
[28]
|
S. Valizadeh and A. Borhanifar, Numerical solution for Riesz fractional diffusion equation via fractional centered difference scheme, Walailak J. Sci. Tech., 2020, Accepted.
|
[29]
|
F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner and V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space farctional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599-2622.
doi: 10.1137/130934192.
|
[30]
|
Y. Zhang and H. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation, J. Comput. Appl. Math., 260 (2014), 266-280.
doi: 10.1016/j.cam.2013.09.040.
|
[31]
|
Y. Zhang and H. Ding, High-order algorithm for the two-dimension Riesz space-fractional diffusion equation, Int. J. Comput. Math., 94 (2017), 2063-2073.
doi: 10.1080/00207160.2016.1274746.
|