• Previous Article
    A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions
doi: 10.3934/dcdsb.2020357

The spatially heterogeneous diffusive rabies model and its shadow system

College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Received  August 2020 Revised  October 2020 Published  December 2020

Fund Project: The author was partially supported by the Fundamental Research Funds for the Central Universities (GK2240260048), and the National Natural Science Foundation of China (11971088)

In this paper, we consider a class of spatially heterogeneous reaction diffusion rabies model which was used to describe population dynamics of the rabies epidemic disease observed in Europe. The dynamics of both the original non-degenerate reaction-diffusion system and its corresponding shadow system are investigated in great details. Firstly, we prove that under certain conditions, the in-time solutions of both the original non-degenerate reaction-diffusion system and its shadow system exist globally and remain uniformly bounded. Secondly, we are capable of showing that the shadow system is the nice approximations for the original non-degenerate reaction-diffusion system when the diffusion rate $ d_R $ of the infectious rabid individuals (R) is sufficiently large. This implies that the dynamics of the shadow system can say as much as possible about the dynamics of the original system when $ d_R $ is sufficiently large. Finally, we characterize the basic reproduction number for the shadow system, and study the stability/instability of the disease-free steady state.

Citation: Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020357
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Academic Press, Amsterdam, 2003.   Google Scholar
[2]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965. doi: 10.1090/chel/369.  Google Scholar

[3]

K. M. AlanaziZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.  Google Scholar

[4]

R. M. AndersonH. C JacksonR. M. May and A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.  doi: 10.1038/289765a0.  Google Scholar

[5]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.  Google Scholar

[7]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Mathematics, 1223 (eds. A. Favini and E. Obrecht), Springer-Verlag, (1986), 61–73. doi: 10.1007/BFb0099183.  Google Scholar

[8]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[9]

A. DucrotJ.-S. Guo and M. Shimojo, Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.  doi: 10.1007/s10884-017-9587-1.  Google Scholar

[10]

S.-I. EiK. Ikeda and E. Yanagida, Instability of multi-spot patterns in shadow systems of reaction-diffusion equations, Commun. Pure Appl. Anal., 14 (2015), 717-736.  doi: 10.3934/cpaa.2015.14.717.  Google Scholar

[11]

A. Fooks, F. Cliquet and S. Finke et al., Rabies, Nature Rev. Dis. Primers, 3 (2017), 17091. Google Scholar

[12]

J. K. Hale and K. Sakamoto, Shadow system and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[13]

K. Hampson, L. Coudeville and T. Lembo et al., Estimating the global burden of endemic canine rabies, PLoS Negl. Trop. Dis., 9 (2015), e0003709. doi: 10.1371/journal.pntd.0003709.  Google Scholar

[14]

H. IkedaM. Mimura and T. Scotti, Shadow system approach to a plankton model generating harmful algal bloom, Discrete Contin. Dyn. Syst., 37 (2017), 829-858.  doi: 10.3934/dcds.2017034.  Google Scholar

[15]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[16]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

H. Kokubu, K. Mischaikow, Y. Nishiura, H. Oka and T. Takaishi, Connecting orbit structure of monotone solutions in the shadow system, J. Differential Equations, 140 (1997), 309–364. doi: 10.1006/jdeq.1997.3317.  Google Scholar

[19]

S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang J. Math., 47 (2016), 71-92.  doi: 10.5556/j.tkjm.47.2016.1916.  Google Scholar

[20]

F. LiJ. Coville and X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879-903.  doi: 10.3934/dcds.2017036.  Google Scholar

[21]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[22]

Q. Li and Y. Wu, Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., 462 (2018), 1048-1072.  doi: 10.1016/j.jmaa.2018.01.023.  Google Scholar

[23]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[24]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[25]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[26]

J. D. Murray and W. L. Seward, On the spatial spread of rabies among foxes with immunity, J. theor. Biol., 156 (1992), 327-348.  doi: 10.1016/S0022-5193(05)80679-4.  Google Scholar

[27]

J. D. MurrayE. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond. B., 229 (1986), 111-150.  doi: 10.1098/rspb.1986.0078.  Google Scholar

[28]

W.-M. NiI. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259-272.  doi: 10.1007/BF03168574.  Google Scholar

[29]

W.-M. NiY. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115-162.   Google Scholar

[31]

Y. Nishiura, Coexistence of infinite many stable solutions to reaction-diffusion systems in the singular limit, in Dynamics Reported: Expositions in Dynamical Systems 3, (eds. C. K. R. T. Jones, U. Kirchgraber and H. O. Walther), Springer-Verlag, (1994), 25–103. Google Scholar

[32]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[33]

C. Ou and J. Wu, Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics, SIAM J. Appl. Math., 67 (2006), 138-163.  doi: 10.1137/060651318.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[37]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[38]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM. J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[39]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.  Google Scholar

[40]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 6 (2004), 259-277.  doi: 10.1142/S021919970400132X.  Google Scholar

[41]

M. WinterL. XuJ. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, J. Differential Equations, 260 (2016), 84-114.  doi: 10.1016/j.jde.2015.08.047.  Google Scholar

[42]

F. Yi, Y. Tang and N. Tuncer, A coupled PDE-ODEs SIR model describing population dynamics of fox rabies-Ⅰ: Steady States, Stability and Bifurcations, preprint. Google Scholar

show all references

References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Academic Press, Amsterdam, 2003.   Google Scholar
[2]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965. doi: 10.1090/chel/369.  Google Scholar

[3]

K. M. AlanaziZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.  Google Scholar

[4]

R. M. AndersonH. C JacksonR. M. May and A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.  doi: 10.1038/289765a0.  Google Scholar

[5]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.  Google Scholar

[7]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Mathematics, 1223 (eds. A. Favini and E. Obrecht), Springer-Verlag, (1986), 61–73. doi: 10.1007/BFb0099183.  Google Scholar

[8]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[9]

A. DucrotJ.-S. Guo and M. Shimojo, Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.  doi: 10.1007/s10884-017-9587-1.  Google Scholar

[10]

S.-I. EiK. Ikeda and E. Yanagida, Instability of multi-spot patterns in shadow systems of reaction-diffusion equations, Commun. Pure Appl. Anal., 14 (2015), 717-736.  doi: 10.3934/cpaa.2015.14.717.  Google Scholar

[11]

A. Fooks, F. Cliquet and S. Finke et al., Rabies, Nature Rev. Dis. Primers, 3 (2017), 17091. Google Scholar

[12]

J. K. Hale and K. Sakamoto, Shadow system and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[13]

K. Hampson, L. Coudeville and T. Lembo et al., Estimating the global burden of endemic canine rabies, PLoS Negl. Trop. Dis., 9 (2015), e0003709. doi: 10.1371/journal.pntd.0003709.  Google Scholar

[14]

H. IkedaM. Mimura and T. Scotti, Shadow system approach to a plankton model generating harmful algal bloom, Discrete Contin. Dyn. Syst., 37 (2017), 829-858.  doi: 10.3934/dcds.2017034.  Google Scholar

[15]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[16]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

H. Kokubu, K. Mischaikow, Y. Nishiura, H. Oka and T. Takaishi, Connecting orbit structure of monotone solutions in the shadow system, J. Differential Equations, 140 (1997), 309–364. doi: 10.1006/jdeq.1997.3317.  Google Scholar

[19]

S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang J. Math., 47 (2016), 71-92.  doi: 10.5556/j.tkjm.47.2016.1916.  Google Scholar

[20]

F. LiJ. Coville and X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879-903.  doi: 10.3934/dcds.2017036.  Google Scholar

[21]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[22]

Q. Li and Y. Wu, Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., 462 (2018), 1048-1072.  doi: 10.1016/j.jmaa.2018.01.023.  Google Scholar

[23]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[24]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[25]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[26]

J. D. Murray and W. L. Seward, On the spatial spread of rabies among foxes with immunity, J. theor. Biol., 156 (1992), 327-348.  doi: 10.1016/S0022-5193(05)80679-4.  Google Scholar

[27]

J. D. MurrayE. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond. B., 229 (1986), 111-150.  doi: 10.1098/rspb.1986.0078.  Google Scholar

[28]

W.-M. NiI. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259-272.  doi: 10.1007/BF03168574.  Google Scholar

[29]

W.-M. NiY. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115-162.   Google Scholar

[31]

Y. Nishiura, Coexistence of infinite many stable solutions to reaction-diffusion systems in the singular limit, in Dynamics Reported: Expositions in Dynamical Systems 3, (eds. C. K. R. T. Jones, U. Kirchgraber and H. O. Walther), Springer-Verlag, (1994), 25–103. Google Scholar

[32]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[33]

C. Ou and J. Wu, Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics, SIAM J. Appl. Math., 67 (2006), 138-163.  doi: 10.1137/060651318.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[37]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[38]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM. J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[39]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.  Google Scholar

[40]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 6 (2004), 259-277.  doi: 10.1142/S021919970400132X.  Google Scholar

[41]

M. WinterL. XuJ. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, J. Differential Equations, 260 (2016), 84-114.  doi: 10.1016/j.jde.2015.08.047.  Google Scholar

[42]

F. Yi, Y. Tang and N. Tuncer, A coupled PDE-ODEs SIR model describing population dynamics of fox rabies-Ⅰ: Steady States, Stability and Bifurcations, preprint. Google Scholar

[1]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[2]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[3]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[4]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[5]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[6]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[10]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[11]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[12]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[13]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[14]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[17]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[18]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[19]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.27

Article outline

[Back to Top]