• Previous Article
    Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains
  • DCDS-B Home
  • This Issue
  • Next Article
    Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns
doi: 10.3934/dcdsb.2020357

The spatially heterogeneous diffusive rabies model and its shadow system

College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Received  August 2020 Revised  October 2020 Published  December 2020

Fund Project: The author was partially supported by the Fundamental Research Funds for the Central Universities (GK2240260048), and the National Natural Science Foundation of China (11971088)

In this paper, we consider a class of spatially heterogeneous reaction diffusion rabies model which was used to describe population dynamics of the rabies epidemic disease observed in Europe. The dynamics of both the original non-degenerate reaction-diffusion system and its corresponding shadow system are investigated in great details. Firstly, we prove that under certain conditions, the in-time solutions of both the original non-degenerate reaction-diffusion system and its shadow system exist globally and remain uniformly bounded. Secondly, we are capable of showing that the shadow system is the nice approximations for the original non-degenerate reaction-diffusion system when the diffusion rate $ d_R $ of the infectious rabid individuals (R) is sufficiently large. This implies that the dynamics of the shadow system can say as much as possible about the dynamics of the original system when $ d_R $ is sufficiently large. Finally, we characterize the basic reproduction number for the shadow system, and study the stability/instability of the disease-free steady state.

Citation: Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020357
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Academic Press, Amsterdam, 2003.   Google Scholar
[2]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965. doi: 10.1090/chel/369.  Google Scholar

[3]

K. M. AlanaziZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.  Google Scholar

[4]

R. M. AndersonH. C JacksonR. M. May and A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.  doi: 10.1038/289765a0.  Google Scholar

[5]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.  Google Scholar

[7]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Mathematics, 1223 (eds. A. Favini and E. Obrecht), Springer-Verlag, (1986), 61–73. doi: 10.1007/BFb0099183.  Google Scholar

[8]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[9]

A. DucrotJ.-S. Guo and M. Shimojo, Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.  doi: 10.1007/s10884-017-9587-1.  Google Scholar

[10]

S.-I. EiK. Ikeda and E. Yanagida, Instability of multi-spot patterns in shadow systems of reaction-diffusion equations, Commun. Pure Appl. Anal., 14 (2015), 717-736.  doi: 10.3934/cpaa.2015.14.717.  Google Scholar

[11]

A. Fooks, F. Cliquet and S. Finke et al., Rabies, Nature Rev. Dis. Primers, 3 (2017), 17091. Google Scholar

[12]

J. K. Hale and K. Sakamoto, Shadow system and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[13]

K. Hampson, L. Coudeville and T. Lembo et al., Estimating the global burden of endemic canine rabies, PLoS Negl. Trop. Dis., 9 (2015), e0003709. doi: 10.1371/journal.pntd.0003709.  Google Scholar

[14]

H. IkedaM. Mimura and T. Scotti, Shadow system approach to a plankton model generating harmful algal bloom, Discrete Contin. Dyn. Syst., 37 (2017), 829-858.  doi: 10.3934/dcds.2017034.  Google Scholar

[15]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[16]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

H. Kokubu, K. Mischaikow, Y. Nishiura, H. Oka and T. Takaishi, Connecting orbit structure of monotone solutions in the shadow system, J. Differential Equations, 140 (1997), 309–364. doi: 10.1006/jdeq.1997.3317.  Google Scholar

[19]

S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang J. Math., 47 (2016), 71-92.  doi: 10.5556/j.tkjm.47.2016.1916.  Google Scholar

[20]

F. LiJ. Coville and X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879-903.  doi: 10.3934/dcds.2017036.  Google Scholar

[21]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[22]

Q. Li and Y. Wu, Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., 462 (2018), 1048-1072.  doi: 10.1016/j.jmaa.2018.01.023.  Google Scholar

[23]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[24]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[25]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[26]

J. D. Murray and W. L. Seward, On the spatial spread of rabies among foxes with immunity, J. theor. Biol., 156 (1992), 327-348.  doi: 10.1016/S0022-5193(05)80679-4.  Google Scholar

[27]

J. D. MurrayE. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond. B., 229 (1986), 111-150.  doi: 10.1098/rspb.1986.0078.  Google Scholar

[28]

W.-M. NiI. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259-272.  doi: 10.1007/BF03168574.  Google Scholar

[29]

W.-M. NiY. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115-162.   Google Scholar

[31]

Y. Nishiura, Coexistence of infinite many stable solutions to reaction-diffusion systems in the singular limit, in Dynamics Reported: Expositions in Dynamical Systems 3, (eds. C. K. R. T. Jones, U. Kirchgraber and H. O. Walther), Springer-Verlag, (1994), 25–103. Google Scholar

[32]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[33]

C. Ou and J. Wu, Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics, SIAM J. Appl. Math., 67 (2006), 138-163.  doi: 10.1137/060651318.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[37]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[38]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM. J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[39]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.  Google Scholar

[40]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 6 (2004), 259-277.  doi: 10.1142/S021919970400132X.  Google Scholar

[41]

M. WinterL. XuJ. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, J. Differential Equations, 260 (2016), 84-114.  doi: 10.1016/j.jde.2015.08.047.  Google Scholar

[42]

F. Yi, Y. Tang and N. Tuncer, A coupled PDE-ODEs SIR model describing population dynamics of fox rabies-Ⅰ: Steady States, Stability and Bifurcations, preprint. Google Scholar

show all references

References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Academic Press, Amsterdam, 2003.   Google Scholar
[2]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965. doi: 10.1090/chel/369.  Google Scholar

[3]

K. M. AlanaziZ. Jackiewicz and H. R. Thieme, Spreading speeds of rabies with territorial and diffusing rabid foxes, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2143-2183.  doi: 10.3934/dcdsb.2019222.  Google Scholar

[4]

R. M. AndersonH. C JacksonR. M. May and A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.  doi: 10.1038/289765a0.  Google Scholar

[5]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1988.  Google Scholar

[7]

W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, Lecture Notes in Mathematics, 1223 (eds. A. Favini and E. Obrecht), Springer-Verlag, (1986), 61–73. doi: 10.1007/BFb0099183.  Google Scholar

[8]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.  doi: 10.1007/BF00178324.  Google Scholar

[9]

A. DucrotJ.-S. Guo and M. Shimojo, Behaviors of solutions for a singular prey-predator model and its shadow system, J. Dynam. Differential Equations, 30 (2018), 1063-1079.  doi: 10.1007/s10884-017-9587-1.  Google Scholar

[10]

S.-I. EiK. Ikeda and E. Yanagida, Instability of multi-spot patterns in shadow systems of reaction-diffusion equations, Commun. Pure Appl. Anal., 14 (2015), 717-736.  doi: 10.3934/cpaa.2015.14.717.  Google Scholar

[11]

A. Fooks, F. Cliquet and S. Finke et al., Rabies, Nature Rev. Dis. Primers, 3 (2017), 17091. Google Scholar

[12]

J. K. Hale and K. Sakamoto, Shadow system and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[13]

K. Hampson, L. Coudeville and T. Lembo et al., Estimating the global burden of endemic canine rabies, PLoS Negl. Trop. Dis., 9 (2015), e0003709. doi: 10.1371/journal.pntd.0003709.  Google Scholar

[14]

H. IkedaM. Mimura and T. Scotti, Shadow system approach to a plankton model generating harmful algal bloom, Discrete Contin. Dyn. Syst., 37 (2017), 829-858.  doi: 10.3934/dcds.2017034.  Google Scholar

[15]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[16]

H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

H. Kokubu, K. Mischaikow, Y. Nishiura, H. Oka and T. Takaishi, Connecting orbit structure of monotone solutions in the shadow system, J. Differential Equations, 140 (1997), 309–364. doi: 10.1006/jdeq.1997.3317.  Google Scholar

[19]

S. Kondo and M. Mimura, A reaction-diffusion system and its shadow system describing harmful algal blooms, Tamkang J. Math., 47 (2016), 71-92.  doi: 10.5556/j.tkjm.47.2016.1916.  Google Scholar

[20]

F. LiJ. Coville and X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879-903.  doi: 10.3934/dcds.2017036.  Google Scholar

[21]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differential Equations, 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[22]

Q. Li and Y. Wu, Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., 462 (2018), 1048-1072.  doi: 10.1016/j.jmaa.2018.01.023.  Google Scholar

[23]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[24]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[25]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[26]

J. D. Murray and W. L. Seward, On the spatial spread of rabies among foxes with immunity, J. theor. Biol., 156 (1992), 327-348.  doi: 10.1016/S0022-5193(05)80679-4.  Google Scholar

[27]

J. D. MurrayE. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond. B., 229 (1986), 111-150.  doi: 10.1098/rspb.1986.0078.  Google Scholar

[28]

W.-M. NiI. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259-272.  doi: 10.1007/BF03168574.  Google Scholar

[29]

W.-M. NiY. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[30]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115-162.   Google Scholar

[31]

Y. Nishiura, Coexistence of infinite many stable solutions to reaction-diffusion systems in the singular limit, in Dynamics Reported: Expositions in Dynamical Systems 3, (eds. C. K. R. T. Jones, U. Kirchgraber and H. O. Walther), Springer-Verlag, (1994), 25–103. Google Scholar

[32]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[33]

C. Ou and J. Wu, Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics, SIAM J. Appl. Math., 67 (2006), 138-163.  doi: 10.1137/060651318.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[36]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[37]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[38]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM. J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[39]

M. J. Ward and J. Wei, Hopf bifurcation of spike solutions for the shadow Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 677-711.  doi: 10.1017/S0956792503005278.  Google Scholar

[40]

J. Wei and M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 6 (2004), 259-277.  doi: 10.1142/S021919970400132X.  Google Scholar

[41]

M. WinterL. XuJ. Zhai and T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, J. Differential Equations, 260 (2016), 84-114.  doi: 10.1016/j.jde.2015.08.047.  Google Scholar

[42]

F. Yi, Y. Tang and N. Tuncer, A coupled PDE-ODEs SIR model describing population dynamics of fox rabies-Ⅰ: Steady States, Stability and Bifurcations, preprint. Google Scholar

[1]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[4]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[5]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[6]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[7]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[8]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[9]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[10]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[11]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[12]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[13]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[14]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[15]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[16]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[17]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[18]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[19]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[20]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 1.27

Article outline

[Back to Top]