-
Previous Article
Asymptotic dynamics of hermitian Riccati difference equations
- DCDS-B Home
- This Issue
-
Next Article
Size estimates for the weighted p-Laplace equation with one measurement
On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas
1. | Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan |
2. | Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan |
In this paper, we study the continuous-time nearest stable matrix problem: given a $ 2\times 2 $ real matrix $ A $, minimize the Frobenius norm of $ A-X $, where $ X $ is a stable matrix. We provide an explicit formula for the global minimizer $ X_* $. The uniqueness of the minimizer is also studied.
References:
[1] |
N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp.
doi: 10.1002/nla.2282. |
[2] |
N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp.
doi: 10.1002/nla.2153. |
[3] |
N. Gillis, M. Karow and P. Sharma,
Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.
doi: 10.1016/j.laa.2019.03.014. |
[4] |
N. Gillis and P. Sharma,
On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.
doi: 10.1016/j.automatica.2017.07.047. |
[5] |
N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989. |
[6] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
![]() |
[7] |
V. Mehrmann and P. Van Dooren,
Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.
doi: 10.1137/19M1259092. |
[8] |
V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. |
[9] |
F.-X. Orbandexivry, Y. Nesterov and P. Van Dooren,
Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.
doi: 10.1016/j.automatica.2013.01.053. |
show all references
References:
[1] |
N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp.
doi: 10.1002/nla.2282. |
[2] |
N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp.
doi: 10.1002/nla.2153. |
[3] |
N. Gillis, M. Karow and P. Sharma,
Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.
doi: 10.1016/j.laa.2019.03.014. |
[4] |
N. Gillis and P. Sharma,
On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.
doi: 10.1016/j.automatica.2017.07.047. |
[5] |
N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989. |
[6] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
![]() |
[7] |
V. Mehrmann and P. Van Dooren,
Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.
doi: 10.1137/19M1259092. |
[8] |
V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. |
[9] |
F.-X. Orbandexivry, Y. Nesterov and P. Van Dooren,
Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.
doi: 10.1016/j.automatica.2013.01.053. |
[1] |
Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002 |
[2] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[3] |
Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022, 9 (3) : 393-419. doi: 10.3934/jcd.2022008 |
[4] |
Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017 |
[5] |
Willem Mélange, Herwig Bruneel, Bart Steyaert, Dieter Claeys, Joris Walraevens. A continuous-time queueing model with class clustering and global FCFS service discipline. Journal of Industrial and Management Optimization, 2014, 10 (1) : 193-206. doi: 10.3934/jimo.2014.10.193 |
[6] |
Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics and Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008 |
[7] |
Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475 |
[8] |
Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022023 |
[9] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[10] |
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277 |
[11] |
Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026 |
[12] |
J. C. Dallon, Lynnae C. Despain, Emily J. Evans, Christopher P. Grant. A continuous-time stochastic model of cell motion in the presence of a chemoattractant. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4839-4852. doi: 10.3934/dcdsb.2020129 |
[13] |
Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487 |
[14] |
Wenpin Tang, Xun Yu Zhou. Tail probability estimates of continuous-time simulated annealing processes. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022015 |
[15] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 353-371. doi: 10.3934/naco.2021010 |
[16] |
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057 |
[17] |
Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166 |
[18] |
Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283 |
[19] |
Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180 |
[20] |
Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]