April  2021, 26(4): 2025-2035. doi: 10.3934/dcdsb.2020358

On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas

1. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung, 811, Taiwan

2. 

Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan

* Corresponding author: Shih-Feng Shieh

Received  August 2020 Revised  October 2020 Published  April 2021 Early access  December 2020

In this paper, we study the continuous-time nearest stable matrix problem: given a $ 2\times 2 $ real matrix $ A $, minimize the Frobenius norm of $ A-X $, where $ X $ is a stable matrix. We provide an explicit formula for the global minimizer $ X_* $. The uniqueness of the minimizer is also studied.

Citation: Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2025-2035. doi: 10.3934/dcdsb.2020358
References:
[1]

N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp. doi: 10.1002/nla.2282.  Google Scholar

[2]

N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp. doi: 10.1002/nla.2153.  Google Scholar

[3]

N. GillisM. Karow and P. Sharma, Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.  doi: 10.1016/j.laa.2019.03.014.  Google Scholar

[4]

N. Gillis and P. Sharma, On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.  doi: 10.1016/j.automatica.2017.07.047.  Google Scholar

[5]

N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989.  Google Scholar

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.   Google Scholar
[7]

V. Mehrmann and P. Van Dooren, Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.  doi: 10.1137/19M1259092.  Google Scholar

[8]

V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar

[9]

F.-X. OrbandexivryY. Nesterov and P. Van Dooren, Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.  doi: 10.1016/j.automatica.2013.01.053.  Google Scholar

show all references

References:
[1]

N. Choudhary, N. Gillis and P. Sharma, On approximating the nearest $\Omega$-stable matrix, Numer Alg. Appl., 27 (2020), e2282, 13pp. doi: 10.1002/nla.2282.  Google Scholar

[2]

N. Gillis, V. Mehrmann and P. Sharma, Computing the nearest stable matrix pairs, Numer. Linear Alg. Appl., 25 (2018), e2153, 16pp. doi: 10.1002/nla.2153.  Google Scholar

[3]

N. GillisM. Karow and P. Sharma, Approximating the nearest stable discrete-time system, Linear Alg. Appl., 573 (2019), 37-53.  doi: 10.1016/j.laa.2019.03.014.  Google Scholar

[4]

N. Gillis and P. Sharma, On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica, 85 (2017), 113-121.  doi: 10.1016/j.automatica.2017.07.047.  Google Scholar

[5]

N. Higham, Matrix nearness problems and applications, Applications of Matrix Theory (Bradford, 1988), 1-27, Inst. Math. Appl. Conf. Ser. New Ser., 22, Oxford Univ. Press, New York, 1989.  Google Scholar

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.   Google Scholar
[7]

V. Mehrmann and P. Van Dooren, Optimal Robustness of Port-Hamiltonian Systems, SIAM J. Matrix Anal. Appl., 41 (2020), 134-151.  doi: 10.1137/19M1259092.  Google Scholar

[8]

V. Noferini and F. Poloni, Nearest $\Omega$-stable matrix via Riemannian optimization, arXiv: 2002.07052. Google Scholar

[9]

F.-X. OrbandexivryY. Nesterov and P. Van Dooren, Nearest stable system using successive convex approximations, Automatica, 49 (2013), 1195-1203.  doi: 10.1016/j.automatica.2013.01.053.  Google Scholar

[1]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[2]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[3]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[4]

Willem Mélange, Herwig Bruneel, Bart Steyaert, Dieter Claeys, Joris Walraevens. A continuous-time queueing model with class clustering and global FCFS service discipline. Journal of Industrial & Management Optimization, 2014, 10 (1) : 193-206. doi: 10.3934/jimo.2014.10.193

[5]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics & Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[6]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[7]

Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks & Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026

[8]

J. C. Dallon, Lynnae C. Despain, Emily J. Evans, Christopher P. Grant. A continuous-time stochastic model of cell motion in the presence of a chemoattractant. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4839-4852. doi: 10.3934/dcdsb.2020129

[9]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[10]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[11]

Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021188

[12]

Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057

[13]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[14]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[15]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

[16]

Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072

[17]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[18]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[19]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[20]

Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (140)
  • HTML views (125)
  • Cited by (0)

[Back to Top]