April  2021, 26(4): 2115-2132. doi: 10.3934/dcdsb.2020359

Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column

1. 

School of Mathematics and Computer Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

2. 

Department of Natural Science in the Center for General Education, Chang Gung University, Guishan, Taoyuan 333, Taiwan

3. 

Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan

* Corresponding author: Feng-Bin Wang

(This paper is dedicated to the seventieth birthday of Professor Sze-Bi Hsu)

Received  August 2020 Revised  September 2020 Published  April 2021 Early access  December 2020

This paper analytically investigates a nonlocal system of reaction-diffusion-advection equations modeling the competition of two phytoplankton species for a limiting nutrient and light in a water column, where dead phytoplankton species can get recycled back into the system as a resource for growth. The threshold dynamics of the single population model is first established. Then the utilization of abstract persistence theory enables us to show that two species population system admits a coexistence steady state and the system is uniformly persistent if the trivial steady state and two global attractors on the boundary are all weak repellers.

Citation: Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359
References:
[1]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅰ: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.  doi: 10.1137/07070663X.

[2]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅱ: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.  doi: 10.1137/070706641.

[3]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.

[5]

U. EbertM. ArrayasN. TemmeB. Sommeojer and J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. 

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. doi: 10.1090/surv/025.

[7]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.

[8]

J. HuismanP. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, American Naturalist, 154 (1999), 46-67. 

[9]

J. HuismanN. N. Pham ThiD. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325. 

[10]

S. B. HsuF. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842.  doi: 10.1007/s10884-011-9224-3.

[11]

S. B. HsuF. B. Wang and X.-Q. Zhao, A reaction-diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659-677.  doi: 10.1016/j.jmaa.2017.02.034.

[12] J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, 2d ed., Cambridge University Press, Cambridge, 1994. 
[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007. 

[14]

C. A. KlausmeierE. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol Oceangr, 49 (2004), 1463-1470. 

[15]

V. Liebig, J. Die Organische Chemie in Ihrer Anwendung auf Agrikultur und Physiologie, Friedrich Vieweg, Braunschweig, 1840.

[16]

E. LitchmanC. A. KlausmeierJ. R. MillerO. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and furture oceanic phytoplankton communities, Biogeoscience, 3 (2006), 585-606. 

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.

[18]

H. NieS.-B. Hsu and J. Wu, Coexistence solutions of a competitive model with two species in a water column, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2691-2714.  doi: 10.3934/dcdsb.2015.20.2691.

[19]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.

[20]

A. B. Ryabov and B. Blasius, A graphical theory of competition on spatial resource gradients, Ecology Letters, 14 (2011), 220-228. 

[21]

A. B. Ryabov and B. Blasius, Depth of the Biomass Maximum Affects the Rules of Resource Competition in a Water Column, Nonlinear Anal., 184 (2014), E132–E146.

[22]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.

[23]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.

[24]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.

[25]

K. YoshiyamaJ. P. MellardE. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, American Naturalist, 174 (2009), 190-203. 

show all references

References:
[1]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅰ: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.  doi: 10.1137/07070663X.

[2]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅱ: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.  doi: 10.1137/070706641.

[3]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.

[5]

U. EbertM. ArrayasN. TemmeB. Sommeojer and J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. 

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. doi: 10.1090/surv/025.

[7]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.

[8]

J. HuismanP. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, American Naturalist, 154 (1999), 46-67. 

[9]

J. HuismanN. N. Pham ThiD. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325. 

[10]

S. B. HsuF. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842.  doi: 10.1007/s10884-011-9224-3.

[11]

S. B. HsuF. B. Wang and X.-Q. Zhao, A reaction-diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659-677.  doi: 10.1016/j.jmaa.2017.02.034.

[12] J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, 2d ed., Cambridge University Press, Cambridge, 1994. 
[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007. 

[14]

C. A. KlausmeierE. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol Oceangr, 49 (2004), 1463-1470. 

[15]

V. Liebig, J. Die Organische Chemie in Ihrer Anwendung auf Agrikultur und Physiologie, Friedrich Vieweg, Braunschweig, 1840.

[16]

E. LitchmanC. A. KlausmeierJ. R. MillerO. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and furture oceanic phytoplankton communities, Biogeoscience, 3 (2006), 585-606. 

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.

[18]

H. NieS.-B. Hsu and J. Wu, Coexistence solutions of a competitive model with two species in a water column, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2691-2714.  doi: 10.3934/dcdsb.2015.20.2691.

[19]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.

[20]

A. B. Ryabov and B. Blasius, A graphical theory of competition on spatial resource gradients, Ecology Letters, 14 (2011), 220-228. 

[21]

A. B. Ryabov and B. Blasius, Depth of the Biomass Maximum Affects the Rules of Resource Competition in a Water Column, Nonlinear Anal., 184 (2014), E132–E146.

[22]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.

[23]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.

[24]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.

[25]

K. YoshiyamaJ. P. MellardE. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, American Naturalist, 174 (2009), 190-203. 

[1]

Danfeng Pang, Hua Nie, Jianhua Wu. Single phytoplankton species growth with light and crowding effect in a water column. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 41-74. doi: 10.3934/dcds.2019003

[2]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1783-1795. doi: 10.3934/dcdsb.2020361

[3]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[4]

Linfeng Mei, Sze-Bi Hsu, Feng-Bin Wang. Growth of single phytoplankton species with internal storage in a water column. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 607-620. doi: 10.3934/dcdsb.2016.21.607

[5]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[6]

Chiu-Ju Lin. Competition of two phytoplankton species for light with wavelength. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 523-536. doi: 10.3934/dcdsb.2016.21.523

[7]

Juping Ji, Lin Wang. Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3073-3081. doi: 10.3934/dcdss.2020135

[8]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[9]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[10]

Sze-Bi Hsu, Feng-Bin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1479-1501. doi: 10.3934/cpaa.2011.10.1479

[11]

Juping Ji, Chengxia Lei, Ye Yuan. Qualitative analysis on a reaction-diffusion nutrient-phytoplankton model with toxic effect of Holling-type II functional. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022190

[12]

Luc Bergé, Stefan Skupin. Modeling ultrashort filaments of light. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1099-1139. doi: 10.3934/dcds.2009.23.1099

[13]

Christopher K.R.T. Jones, Bevin Maultsby. A dynamical approach to phytoplankton blooms. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 859-878. doi: 10.3934/dcds.2017035

[14]

Simone Göttlich, Ute Ziegler. Traffic light control: A case study. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 483-501. doi: 10.3934/dcdss.2014.7.483

[15]

Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004

[16]

Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553

[17]

A. M. López. Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 337-354. doi: 10.3934/dcds.2017014

[18]

Nuno Luzia. Measure of full dimension for some nonconformal repellers. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 291-302. doi: 10.3934/dcds.2010.26.291

[19]

Jean-Jacques Kengwoung-Keumo. Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences & Engineering, 2016, 13 (4) : 787-812. doi: 10.3934/mbe.2016018

[20]

Mohammad A. Tabatabai, Wayne M. Eby, Sejong Bae, Karan P. Singh. A flexible multivariable model for Phytoplankton growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 913-923. doi: 10.3934/mbe.2013.10.913

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (256)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]