\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column

  • * Corresponding author: Feng-Bin Wang

    * Corresponding author: Feng-Bin Wang

(This paper is dedicated to the seventieth birthday of Professor Sze-Bi Hsu)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper analytically investigates a nonlocal system of reaction-diffusion-advection equations modeling the competition of two phytoplankton species for a limiting nutrient and light in a water column, where dead phytoplankton species can get recycled back into the system as a resource for growth. The threshold dynamics of the single population model is first established. Then the utilization of abstract persistence theory enables us to show that two species population system admits a coexistence steady state and the system is uniformly persistent if the trivial steady state and two global attractors on the boundary are all weak repellers.

    Mathematics Subject Classification: Primary: 35J55, 35J65, 35B40, 35K57, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅰ: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.  doi: 10.1137/07070663X.
    [2] Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅱ: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.  doi: 10.1137/070706641.
    [3] Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.
    [4] Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.
    [5] U. EbertM. ArrayasN. TemmeB. Sommeojer and J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. 
    [6] J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. doi: 10.1090/surv/025.
    [7] S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.
    [8] J. HuismanP. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, American Naturalist, 154 (1999), 46-67. 
    [9] J. HuismanN. N. Pham ThiD. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325. 
    [10] S. B. HsuF. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842.  doi: 10.1007/s10884-011-9224-3.
    [11] S. B. HsuF. B. Wang and X.-Q. Zhao, A reaction-diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659-677.  doi: 10.1016/j.jmaa.2017.02.034.
    [12] J. T. O. KirkLight and photosynthesis in aquatic ecosystems, 2d ed., Cambridge University Press, Cambridge, 1994. 
    [13] C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007. 
    [14] C. A. KlausmeierE. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol Oceangr, 49 (2004), 1463-1470. 
    [15] V. Liebig, J. Die Organische Chemie in Ihrer Anwendung auf Agrikultur und Physiologie, Friedrich Vieweg, Braunschweig, 1840.
    [16] E. LitchmanC. A. KlausmeierJ. R. MillerO. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and furture oceanic phytoplankton communities, Biogeoscience, 3 (2006), 585-606. 
    [17] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.
    [18] H. NieS.-B. Hsu and J. Wu, Coexistence solutions of a competitive model with two species in a water column, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2691-2714.  doi: 10.3934/dcdsb.2015.20.2691.
    [19] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.
    [20] A. B. Ryabov and B. Blasius, A graphical theory of competition on spatial resource gradients, Ecology Letters, 14 (2011), 220-228. 
    [21] A. B. Ryabov and B. Blasius, Depth of the Biomass Maximum Affects the Rules of Resource Competition in a Water Column, Nonlinear Anal., 184 (2014), E132–E146.
    [22] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.
    [23] H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.
    [24] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.
    [25] K. YoshiyamaJ. P. MellardE. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, American Naturalist, 174 (2009), 190-203. 
  • 加载中
SHARE

Article Metrics

HTML views(2191) PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return