doi: 10.3934/dcdsb.2020359

Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column

1. 

School of Mathematics and Computer Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

2. 

Department of Natural Science in the Center for General Education, Chang Gung University, Guishan, Taoyuan 333, Taiwan

3. 

Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan

* Corresponding author: Feng-Bin Wang

(This paper is dedicated to the seventieth birthday of Professor Sze-Bi Hsu)

Received  August 2020 Revised  September 2020 Published  December 2020

This paper analytically investigates a nonlocal system of reaction-diffusion-advection equations modeling the competition of two phytoplankton species for a limiting nutrient and light in a water column, where dead phytoplankton species can get recycled back into the system as a resource for growth. The threshold dynamics of the single population model is first established. Then the utilization of abstract persistence theory enables us to show that two species population system admits a coexistence steady state and the system is uniformly persistent if the trivial steady state and two global attractors on the boundary are all weak repellers.

Citation: Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020359
References:
[1]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅰ: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.  doi: 10.1137/07070663X.  Google Scholar

[2]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅱ: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.  doi: 10.1137/070706641.  Google Scholar

[3]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[5]

U. EbertM. ArrayasN. TemmeB. Sommeojer and J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124.   Google Scholar

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[7]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[8]

J. HuismanP. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, American Naturalist, 154 (1999), 46-67.   Google Scholar

[9]

J. HuismanN. N. Pham ThiD. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325.   Google Scholar

[10]

S. B. HsuF. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842.  doi: 10.1007/s10884-011-9224-3.  Google Scholar

[11]

S. B. HsuF. B. Wang and X.-Q. Zhao, A reaction-diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659-677.  doi: 10.1016/j.jmaa.2017.02.034.  Google Scholar

[12] J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, 2d ed., Cambridge University Press, Cambridge, 1994.   Google Scholar
[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007.   Google Scholar

[14]

C. A. KlausmeierE. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol Oceangr, 49 (2004), 1463-1470.   Google Scholar

[15]

V. Liebig, J. Die Organische Chemie in Ihrer Anwendung auf Agrikultur und Physiologie, Friedrich Vieweg, Braunschweig, 1840. Google Scholar

[16]

E. LitchmanC. A. KlausmeierJ. R. MillerO. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and furture oceanic phytoplankton communities, Biogeoscience, 3 (2006), 585-606.   Google Scholar

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

H. NieS.-B. Hsu and J. Wu, Coexistence solutions of a competitive model with two species in a water column, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2691-2714.  doi: 10.3934/dcdsb.2015.20.2691.  Google Scholar

[19]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[20]

A. B. Ryabov and B. Blasius, A graphical theory of competition on spatial resource gradients, Ecology Letters, 14 (2011), 220-228.   Google Scholar

[21]

A. B. Ryabov and B. Blasius, Depth of the Biomass Maximum Affects the Rules of Resource Competition in a Water Column, Nonlinear Anal., 184 (2014), E132–E146. Google Scholar

[22]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.  Google Scholar

[23]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[24]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[25]

K. YoshiyamaJ. P. MellardE. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, American Naturalist, 174 (2009), 190-203.   Google Scholar

show all references

References:
[1]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅰ: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.  doi: 10.1137/07070663X.  Google Scholar

[2]

Y. Du and S. B. Hsu, Concentration phenomena in a nonlocal quasilinear problem modelling phytoplankton Ⅱ: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.  doi: 10.1137/070706641.  Google Scholar

[3]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[4]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[5]

U. EbertM. ArrayasN. TemmeB. Sommeojer and J. Huisman, Critical condition for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124.   Google Scholar

[6]

J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[7]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[8]

J. HuismanP. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, American Naturalist, 154 (1999), 46-67.   Google Scholar

[9]

J. HuismanN. N. Pham ThiD. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325.   Google Scholar

[10]

S. B. HsuF. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dyn. Differ. Equ., 23 (2011), 817-842.  doi: 10.1007/s10884-011-9224-3.  Google Scholar

[11]

S. B. HsuF. B. Wang and X.-Q. Zhao, A reaction-diffusion model of harmful algae and zooplankton in an ecosystem, J. Math. Anal. Appl., 451 (2017), 659-677.  doi: 10.1016/j.jmaa.2017.02.034.  Google Scholar

[12] J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, 2d ed., Cambridge University Press, Cambridge, 1994.   Google Scholar
[13]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007.   Google Scholar

[14]

C. A. KlausmeierE. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol Oceangr, 49 (2004), 1463-1470.   Google Scholar

[15]

V. Liebig, J. Die Organische Chemie in Ihrer Anwendung auf Agrikultur und Physiologie, Friedrich Vieweg, Braunschweig, 1840. Google Scholar

[16]

E. LitchmanC. A. KlausmeierJ. R. MillerO. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and furture oceanic phytoplankton communities, Biogeoscience, 3 (2006), 585-606.   Google Scholar

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

H. NieS.-B. Hsu and J. Wu, Coexistence solutions of a competitive model with two species in a water column, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2691-2714.  doi: 10.3934/dcdsb.2015.20.2691.  Google Scholar

[19]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[20]

A. B. Ryabov and B. Blasius, A graphical theory of competition on spatial resource gradients, Ecology Letters, 14 (2011), 220-228.   Google Scholar

[21]

A. B. Ryabov and B. Blasius, Depth of the Biomass Maximum Affects the Rules of Resource Competition in a Water Column, Nonlinear Anal., 184 (2014), E132–E146. Google Scholar

[22]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.  Google Scholar

[23]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[24]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[25]

K. YoshiyamaJ. P. MellardE. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, American Naturalist, 174 (2009), 190-203.   Google Scholar

[1]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[2]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[3]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[4]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[5]

Marta Biancardi, Lucia Maddalena, Giovanni Villani. Water taxes and fines imposed on legal and illegal firms exploiting groudwater. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021008

[6]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[7]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[10]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[13]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[18]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[19]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[20]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

2019 Impact Factor: 1.27

Article outline

[Back to Top]