April  2021, 26(4): 1991-2010. doi: 10.3934/dcdsb.2020362

The spatial dynamics of a Zebra mussel model in river environments

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada

* Corresponding author: Yu Jin

(Dedicated to Professor Sze-Bi Hsu on the occasion of his retirement)

Received  August 2020 Revised  November 2020 Published  April 2021 Early access  December 2020

Fund Project: X.-Q. Zhao's research is supported in part by the NSERC of Canada

Huang et al. [10] developed a hybrid continuous/discrete-time model to describe the persistence and invasion dynamics of Zebra mussels in rivers. They used a net reproductive rate $ R_0 $ to determine population persistence in a bounded domain and estimated spreading speeds by applying the linear determinacy conjecture and using the formula in [16]. Since the associated solution operator is non-monotonic and non-compact, it is nontrivial to rigorously establish these quantities. In this paper, we analyze the spatial dynamics of this model mathematically. We first solve the parabolic equation and rewrite the model into a fully discrete-time model. In a bounded domain, we show that the spectral radius $ \hat{r} $ of the linearized operator can be used to determine population persistence and that the sign of $ \hat{r}-1 $ is the same as that of $ R_0-1 $, which confirms that $ R_0 $ defined in [10] can be used to determine population persistence. In an unbounded domain, we construct two monotonic operators to control the model operator from above and from below and obtain upper and lower bounds of the spreading speeds of the model.

 

Erratum: The name of the second author has been corrected from Xiang-Qiang Zhao to Xiao-Qiang Zhao. We apologize for any inconvenience this may cause.

Citation: Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362
References:
[1]

D. T. E. BastvikenN. F. Caraco and J. J. Cole, Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition, Freshwater Biology, 39 (1998), 375-386.  doi: 10.1046/j.1365-2427.1998.00283.x.

[2] E. Brian Davies, Linear Operators and their Spectra,, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618864.
[3]

H. Caswell, Matrix Population Models, Sinauer Associates Inc, 2nd edition, 2000.

[4]

K. Deimling, Nonlinear Functional Analysis, , Springer-Verlag, Berlin, Heidelberg, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Maximum Principles and Applications, , Volume 1 (Partial Differential Equations and Application), World Scientific Pub Co Inc, 2006. doi: 10.1142/9789812774446.

[6]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM Journal on Mathematical Analysis, 46 (2014), 3678-3704.  doi: 10.1137/140953939.

[7]

D. W. Garton and W. R. Haag, Seasonal reproductive cycles and settlement patterns of Dreissena polymorpha in western Lake Erie, in Zebra Mussels: Biology, Impacts, and Control, T. F. Nalepa and D. W. Schloesser, eds., Lewis Publishers, Boca Raton, FL, 1993, 111-128.

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Search Notes in Mathematics Series, Vol.247, Longman Scientific Technical, Harlow, UK, 1991.

[9]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integro-difference equations, SIAM Journal on Mathematical Analysis, 40 (2008), 776-789.  doi: 10.1137/070703016.

[10]

Q. HuangH. Wang and M. A. Lewis, A hybrid continudous/discrete-time model for invasion dynamics of zebra mussles in rivers, SIAM Journal on Applied Mathematics, 77 (2017), 854-880.  doi: 10.1137/16M1057826.

[11]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.

[12]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 61 (2008), 137-138.  doi: 10.1002/cpa.20221.

[13]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 49 (2017), 3603-3636.  doi: 10.1137/16M1108832.

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.

[15]

H. W. MckenzieY. JinJ. Jacobsen and M. A. Lewis, $R_0$ analysis of a spatiotemporal model for a stream population, SIAM Journal on Applied Dynamical Systems, 11 (2012), 567-596.  doi: 10.1137/100802189.

[16]

M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations, Ecology, 81 (2000), 1613-1628. 

[17]

A. RicciardiF. G. Whoriskey and J. B. Rasmussen, Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River, The Canadian Journal of Fisheries and Aquatic Sciences, 53 (1996), 1434-1444.  doi: 10.1139/f96-068.

[18]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.

[19]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.  doi: 10.1137/080732870.

[20]

X. Wang and X.-Q. Zhao, Target reproduction numbers for reaction-diffusion population models, Journal of Mathematical Biology, 81 (2020), 625-647.  doi: 10.1007/s00285-020-01523-9.

[21]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM Journal on Mathematical Analysis, 13 (1982), 353-396.  doi: 10.1137/0513028.

[22]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Journal of Mathematical Biology, 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[23]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with non-monotone recruitment functions, Journal of Mathematical Biology, 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.

[24]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, Journal of Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[25]

R. Wu and X.-Q. Zhao, Spatial invasion of a birth pulse populatoin with nonlocal dispersal, SIAM Journal on Applied Mathematics, 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.

[26]

X.-Q. Zhao, Dynamical Systems in Population Biology, , second edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.

show all references

References:
[1]

D. T. E. BastvikenN. F. Caraco and J. J. Cole, Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition, Freshwater Biology, 39 (1998), 375-386.  doi: 10.1046/j.1365-2427.1998.00283.x.

[2] E. Brian Davies, Linear Operators and their Spectra,, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618864.
[3]

H. Caswell, Matrix Population Models, Sinauer Associates Inc, 2nd edition, 2000.

[4]

K. Deimling, Nonlinear Functional Analysis, , Springer-Verlag, Berlin, Heidelberg, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Maximum Principles and Applications, , Volume 1 (Partial Differential Equations and Application), World Scientific Pub Co Inc, 2006. doi: 10.1142/9789812774446.

[6]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM Journal on Mathematical Analysis, 46 (2014), 3678-3704.  doi: 10.1137/140953939.

[7]

D. W. Garton and W. R. Haag, Seasonal reproductive cycles and settlement patterns of Dreissena polymorpha in western Lake Erie, in Zebra Mussels: Biology, Impacts, and Control, T. F. Nalepa and D. W. Schloesser, eds., Lewis Publishers, Boca Raton, FL, 1993, 111-128.

[8]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Search Notes in Mathematics Series, Vol.247, Longman Scientific Technical, Harlow, UK, 1991.

[9]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integro-difference equations, SIAM Journal on Mathematical Analysis, 40 (2008), 776-789.  doi: 10.1137/070703016.

[10]

Q. HuangH. Wang and M. A. Lewis, A hybrid continudous/discrete-time model for invasion dynamics of zebra mussles in rivers, SIAM Journal on Applied Mathematics, 77 (2017), 854-880.  doi: 10.1137/16M1057826.

[11]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.

[12]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 61 (2008), 137-138.  doi: 10.1002/cpa.20221.

[13]

X. LiangL. Zhang and X.-Q. Zhao, The principal eigenvalue for degenerate periodic reaction-diffusion systems, SIAM Journal on Mathematical Analysis, 49 (2017), 3603-3636.  doi: 10.1137/16M1108832.

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM Journal on Mathematical Analysis, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.

[15]

H. W. MckenzieY. JinJ. Jacobsen and M. A. Lewis, $R_0$ analysis of a spatiotemporal model for a stream population, SIAM Journal on Applied Dynamical Systems, 11 (2012), 567-596.  doi: 10.1137/100802189.

[16]

M. G. Neubert and H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations, Ecology, 81 (2000), 1613-1628. 

[17]

A. RicciardiF. G. Whoriskey and J. B. Rasmussen, Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River, The Canadian Journal of Fisheries and Aquatic Sciences, 53 (1996), 1434-1444.  doi: 10.1139/f96-068.

[18]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.

[19]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.  doi: 10.1137/080732870.

[20]

X. Wang and X.-Q. Zhao, Target reproduction numbers for reaction-diffusion population models, Journal of Mathematical Biology, 81 (2020), 625-647.  doi: 10.1007/s00285-020-01523-9.

[21]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM Journal on Mathematical Analysis, 13 (1982), 353-396.  doi: 10.1137/0513028.

[22]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Journal of Mathematical Biology, 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[23]

H. F. WeinbergerK. Kawasaki and N. Shigesada, Spreading speeds of spatially periodic integro-difference models for populations with non-monotone recruitment functions, Journal of Mathematical Biology, 57 (2008), 387-411.  doi: 10.1007/s00285-008-0168-0.

[24]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, Journal of Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[25]

R. Wu and X.-Q. Zhao, Spatial invasion of a birth pulse populatoin with nonlocal dispersal, SIAM Journal on Applied Mathematics, 79 (2019), 1075-1097.  doi: 10.1137/18M1209805.

[26]

X.-Q. Zhao, Dynamical Systems in Population Biology, , second edition, Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.

[1]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[2]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[3]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[4]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[5]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[6]

Guillaume Cantin, Cristiana J. Silva, Arnaud Banos. Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks and Heterogeneous Media, 2022, 17 (3) : 333-357. doi: 10.3934/nhm.2022010

[7]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[8]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[9]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[10]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[11]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[12]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[13]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[14]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

[15]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[16]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[17]

Guo Lin, Yahui Wang. Spreading speed in a non-monotonic Ricker competitive integrodifference system. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022108

[18]

Arnaud Ducrot, David Manceau, Ahmadou Sylla. Spreading speed for an epidemic system modelling plant disease with adaptation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022156

[19]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[20]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (431)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]